首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article reviews the current state of systems biology approaches, including the experimental tools used to generate ‘omic’ data and computational frameworks to interpret this data. Through illustrative examples, systems biology approaches to understand gene expression and gene expression regulation are discussed. Some of the challenges facing this field and the future opportunities in the systems biology era are highlighted.  相似文献   

2.
3.
4.
Gene transfer into mammalian somatic cells in vivo.   总被引:3,自引:0,他引:3  
Direct gene transfer into mammalian somatic tissues in vivo is a developing technology with potential application for human gene therapy. During the past 2 years, extensive progress and numerous breakthroughs have been made in this area of research. Genetically engineered retroviral vectors have been used successfully to infect live animals, effecting foreign gene expression in liver, blood vessels, and mammary tissues. Recombinant adenovirus and herpes simplex virus vectors have been utilized effectively for in vivo gene transfer into lung and brain tissues, respectively. Direct injection or particle bombardment of DNA has been demonstrated to provide a physical means for in situ gene transfer, while carrier-mediated DNA delivery techniques have been extended to target specific organs for gene expression. These technological developments in conjunction with the initiation of the NIH human gene therapy trials have marked a milestone in developing new medical treatments for various genetic diseases and cancer. Various in vivo gene transfer techniques should also provide new tools for basic research in molecular and developmental genetics.  相似文献   

5.
PURPOSE OF REVIEW: The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. RECENT FINDINGS: New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. SUMMARY: The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.  相似文献   

6.
昆虫RNAi技术及其应用   总被引:3,自引:0,他引:3  
何正波  陈斌  冯国忠 《昆虫知识》2009,46(4):525-532
RNAi是近几年发展起来的抑制基因表达的新技术。部分昆虫存在RNAi信号的系统性传播现象,可以将dsRNA直接注射进昆虫的卵、血腔或局部组织,引发远距离靶基因的特异性沉默,建立起了Embryo RNAi,Larval RNAi,Adult RNAi,Parental RNAi,Feeding RNAi和基于转基因技术的可遗传RNAi等昆虫RNAi技术,使RNAi迅速成为了研究昆虫尤其是非模式昆虫基因功能的主要方法。文章拟就RNAi的系统性、昆虫RNAi技术及其应用进行综述。  相似文献   

7.
Breast carcinoma is one of the most common neoplasms in women and is a leading cause of cancer related deaths worldwide. In recent years improved diagnostic tools have made it possible to detect breast cancers at early, even pre-invasive stages leading to a significant decrease in breast cancer mortality rates over the past decades. The increased number of patients diagnosed with pre-invasive breast tumors opened up new avenues in research and new dilemmas in clinical practice, since our understanding of the pathophysiology of such lesions is just beginning to emerge. Part of the delay and difficulty with analyzing pre-invasive tumors including ductal carcinoma in situ has been due to the lack of appropriate techniques suitable for studies of small, frequently microscopic size tumors. Recently developed technologies such as DNA microarrays and SAGE (serial analysis of gene expression) have made it possible to obtain comprehensive gene expression profiles of breast carcinomas of all stages. The application of these genomics approaches in combination with the complete sequence of the human genome and extensive molecular epidemiological studies is likely to further our understanding of the molecular basis of mammary tumorigenesis and will identify targets for risk prediction, cancer prevention and treatment.  相似文献   

8.
Sugarcane improvement: how far can we go?   总被引:1,自引:0,他引:1  
In recent years, efforts to improve sugarcane have focused on the development of biotechnology for this crop. It has become clear that sugarcane lacks tools for the biotechnological route of improvement and that the initial efforts in sequencing ESTs had limited impact for breeding. Until recently, the models used by breeders in statistical genetics approaches have been developed for diploid organisms, which are not ideal for a polyploid genome such as that of sugarcane. Breeding programs are dealing with decreasing yield gains. The contribution of multiple alleles to complex traits such as yield is a basic question underlining the breeding efforts that could only be addressed by the development of specific tools for this grass. However, functional genomics has progressed and gene expression profiling is leading to the definition of gene networks. The sequencing of the sugarcane genome, which is underway, will greatly contribute to numerous aspects of research on grasses. We expect that both the transgenic and the marker-assisted route for sugarcane improvement will contribute to increased sugar, stress tolerance, and higher yield and that the industry for years to come will be able to rely on sugarcane as the most productive energy crop.  相似文献   

9.
Abstract

The present short introduction to confocal microscopy in plant cell biology is meant to be a reference addressed to those who are approaching these studies. Optical and genetic techniques developed over the last years have revolutionised plant cell biology. They enable in vivo studies of cell organisation, mainly based on the use of confocal microscopy and derivatives of the Green Fluorescent Protein (GFP). Such fluorescent proteins are extremely useful tools for directly monitoring gene expression and protein localisation, and for selectively labelling sub-cellular structures. GFP-expressing plants can be directly examined by confocal microscopy to obtain high-resolution optical sections of intact tissues and to allow time-lapse observation of dynamic processes. The application of such approaches to the investigation of root cell responses during arbuscular mycorrhizal colonisation is discussed.  相似文献   

10.
11.
A great challenge for modern cell biology is the successful examination of the co-expression of thousands of genes under physiological or pathological conditions and how the expression patterns define the different states of a single cell, tissue or a microorganism. Gene expression can be analyzed today on a large scale by advanced technical approaches for differential screening of proteins and mRNAs. The identification of differentially expressed mRNAs has been successfully applied to understand gene function and the underlying molecular mechanism(-s) of differentiation, development and disease state. Analysis of gene expression by the systematic mapping of thousands of proteins present in a cell or tissue can be achieved by the use of two-dimensional (2D) gel electrophoresis, quantitative computer image analysis, and protein identification techniques. In this article, we comment on some of these techniques and try to stress their advantages and drawbacks. We show how data from RNA/DNA mapping, sequence information from genome projects and protein pattern profiling can be linked with each other and annotated. These comprehensive approaches permit the study of differential gene and protein expressions in cells or tissues.  相似文献   

12.
The goal of gene therapy is either to introduce a therapeutic gene into or replace a defective gene in an individual's cells and tissues. Gene therapy has been urged as a potential method to induce therapeutic angiogenesis in ischemic myocardium and peripheral tissues after extensive investigation in recent preclinical and clinical studies. A successful gene therapy mainly relies on the development of the gene delivery vector. Developments in viral and nonviral vector technology including cell-based gene transfer will further improve transgene delivery and expression efficiency. Nonviral approaches as alternative gene delivery vehicles to viral vectors have received significant attention. Recently, a simple and safe approach of gene delivery into target cells using naked DNA has been improved by combining several techniques. Among the physical approaches, ultrasonic microbubble gene delivery, with its high safety profile, low costs, and repeatable applicability, can increase the permeability of cell membrane to macromolecules such as plasmid DNA by its bioeffects and can provide as a feasible tool in gene delivery. On the other hand, among the promising areas for gene therapy in acquired diseases, ischemic cardiovascular diseases have been widely studied. As a result, gene therapy using advanced technology may play an important role in this regard. The aims of this review focus on understanding the cellular and in vivo barriers in gene transfer and provide an overview of currently used chemical vectors and physical tools that are applied in nonviral cardiovascular gene transfer.  相似文献   

13.
Xiao  Hui  Bartoszek  Krzysztof  Lio&#;  Pietro 《BMC bioinformatics》2018,19(15):439-18

Background

Inflammation is a core element of many different, systemic and chronic diseases that usually involve an important autoimmune component. The clinical phase of inflammatory diseases is often the culmination of a long series of pathologic events that started years before. The systemic characteristics and related mechanisms could be investigated through the multi–omic comparative analysis of many inflammatory diseases. Therefore, it is important to use molecular data to study the genesis of the diseases. Here we propose a new methodology to study the relationships between inflammatory diseases and signalling molecules whose dysregulation at molecular levels could lead to systemic pathological events observed in inflammatory diseases.

Results

We first perform an exploratory analysis of gene expression data of a number of diseases that involve a strong inflammatory component. The comparison of gene expression between disease and healthy samples reveals the importance of members of gene families coding for signalling factors. Next, we focus on interested signalling gene families and a subset of inflammation related diseases with multi–omic features including both gene expression and DNA methylation. We introduce a phylogenetic–based multi–omic method to study the relationships between multi–omic features of inflammation related diseases by integrating gene expression, DNA methylation through sequence based phylogeny of the signalling gene families. The models of adaptations between gene expression and DNA methylation can be inferred from pre–estimated evolutionary relationship of a gene family. Members of the gene family whose expression or methylation levels significantly deviate from the model are considered as the potential disease associated genes.

Conclusions

Applying the methodology to four gene families (the chemokine receptor family, the TNF receptor family, the TGF– β gene family, the IL–17 gene family) in nine inflammation related diseases, we identify disease associated genes which exhibit significant dysregulation in gene expression or DNA methylation in the inflammation related diseases, which provides clues for functional associations between the diseases.
  相似文献   

14.
"Omic" approaches for unraveling signaling networks   总被引:4,自引:0,他引:4  
Signaling pathways are crucial for cell differentiation and response to cellular environments. Recently, a large number of approaches for the global analysis of genes and proteins have been described. These have provided important new insights into the components of different pathways and the molecular and cellular responses of these pathways. This review covers genomic and proteomic (collectively referred to as "omic") approaches for the global analysis of cell signaling, including gene expression profiling and analysis, protein-protein interaction methods, protein microarrays, mass spectroscopy and gene-disruption and engineering approaches.  相似文献   

15.
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird’s- up to worm’s-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in “histo-biochemical” techniques and their manifold applications.  相似文献   

17.
18.
T Takahashi 《Human cell》1990,3(4):294-310
The use of nucleic acid hybridization techniques has expanded into many areas, including studies of gene structure and function, routine diagnosis of human, animal and plant diseases, and also forensic science. In situ hybridization is one of the techniques currently available for nucleic acid hybridization and has some distinct advantages compared with standard techniques such as dot-blot, Southern or Northern hybridization, in which the histological structure is lost during extraction of nucleic acids. On the other hand, immunohistochemical staining is one branch of histochemistry that has received considerable attention in recent years as a very sensitive method for localization of specific proteins and other antigenic macromolecules within tissues and cells. This technique has also been widely used for clinical diagnosis and in various fields of research in medical science and biology. Automation of colorimetric in situ hybridization and immunohistochemistry would greatly contribute to the ease of introducing these techniques for routine pathological diagnosis and would improve the reproducibility of the assay. In this review, author will describe the development of an automated method for in situ hybridization and immunohistochemical staining using an automatic machine for both procedures.  相似文献   

19.
文路  汤富酬 《遗传》2014,36(11):1069-1076
细胞异质性是生物组织的普遍特征。常规转录组测序(RNA-Seq)技术需要上万个细胞,所测结果实际上是一群细胞基因表达的平均值,所以难以鉴别细胞之间基因表达的异质性。单细胞RNA-Seq技术的分辨率精确至单个细胞,为辨别异质性群体中各种细胞类型的转录组特征提供了有力的工具。近年来单细胞RNA-Seq技术发展迅速,在方法学上包括cDNA扩增方法的多样化、对灵敏度和技术噪声的定量分析、浅覆盖高通量单细胞RNA-Seq方法和原位RNA-Seq技术等;在技术应用方面应用范围从早期胚胎发育扩大到组织器官发育、免疫和肿瘤等多个领域。文章对单细胞RNA-Seq在方法学和技术应用两方面的研究进展进行了详细阐述。  相似文献   

20.
《Genomics》2020,112(5):3157-3165
Identifying genes involved in functional differences between similar tissues from expression profiles is challenging, because the expected differences in expression levels are small. To exemplify this challenge, we studied the expression profiles of two skeletal muscles, deltoid and biceps, in healthy individuals. We provide a series of guides and recommendations for the analysis of this type of studies. These include how to account for batch effects and inter-individual differences to optimize the detection of gene signatures associated with tissue function. We provide guidance on the selection of optimal settings for constructing gene co-expression networks through parameter sweeps of settings and calculation of the overlap with an established knowledge network. Our main recommendation is to use a combination of the data-driven approaches, such as differential gene expression analysis and gene co-expression network analysis, and hypothesis-driven approaches, such as gene set connectivity analysis. Accordingly, we detected differences in metabolic gene expression between deltoid and biceps that were supported by both data- and hypothesis-driven approaches. Finally, we provide a bioinformatic framework that support the biological interpretation of expression profiles from related tissues from this combination of approaches, which is available at github.com/tabbassidaloii/AnalysisFrameworkSimilarTissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号