首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
For the past 50 years, it was believed that all bats, like humans and guinea pigs, did not synthesize vitamin C (Vc) because they lacked activity of L-gulonolactone oxidase (GULO) in their livers. Humans and guinea pigs lack the activity due to pseudogenization of GULO in their genomes, but there is no genetic evidence to show whether such loss in bats is caused by pseudogenization. Unexpectedly, our successful molecular cloning in one frugivorous bat (Rousettus leschenaultii) and one insectivorous bat (Hipposideros armiger) ascertains that no pseudogenization occurs in these species. Furthermore, we find normal GULO protein expression using bat-specific anti-GULO polyclonal antibodies in bats, evaluated by Western blotting. Most surprisingly, GULO activity assays reveal that these two bat species have retained the ability to synthesize Vc, but at low levels compared with the mouse. It is known that bats in the genus Pteropus have lost GULO activity. We then found that functional constraints acting on the GULO of Pteropus vampyrus (which lost its function) are relaxed. These results imply that the ability to synthesize Vc in bats has not been lost completely in species as previously thought. We also suggest that the evolution of bat GULO genes can be a good model to study genetic processes associated with loss-of-function.  相似文献   

2.
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates.  相似文献   

3.
4.
Inactivation dates of the human and guinea pig vitamin C genes   总被引:1,自引:0,他引:1  
Lachapelle MY  Drouin G 《Genetica》2011,139(2):199-207
The capacity to biosynthesize ascorbic acid has been lost in a number of species including primates, guinea pigs, teleost fishes, bats, and birds. This inability results from mutations in the GLO gene coding for L-gulono-γ-lactone oxidase, the enzyme responsible for catalyzing the last step in the vitamin C biosynthetic pathway. We analyzed available primate and rodent GLO gene sequences to determine their evolutionary history. We used a method based on sequence comparisons of lineages with and without functional GLO genes to calculate inactivation dates of 61 and 14 MYA for the primate and guinea pig genes, respectively. These estimates are consistent with previous phylogeny-based estimates. An analysis of transposable element distribution in the primate and rodent GLO sequences did not reveal conclusive evidence that illegitimate recombination between repeats has contributed to the loss of exons in the primate and guinea pig genes.  相似文献   

5.
湖南省雀形目鸟类新纪录4种   总被引:2,自引:2,他引:2  
2011年5月~2012年6月,作者在湖南壶瓶山国家级自然保护区进行鸟类资源调查和种群监测的过程中,拍摄到4种雀形目鸟类,经分类鉴定为灰翅鸫(Turdus boulboul)、蓝喉仙鹟(Cyornis rubeculoides)、灰眉岩鹀(Emberiza godlewskii)和银脸长尾山雀(Aegithalos fuliginosus),均为湖南省鸟类新纪录。  相似文献   

6.
Humans and guinea pigs are species which are unable to synthesize ascorbic acid (vitamin C) because, unlike rodents, they lack the enzyme L-gulonolactone oxidase (Gulo). Although the phenotype of lacking vitamin C in humans, named scurvy, has long been well known, information on the impact of lacking Gulo on the gene expression profiles of different tissues is still missing. This knowledge could improve our understanding of molecular pathways in which Gulo may be involved. Recently, we discovered a deletion that includes all 12 exons in the gene for Gulo in the sfx mouse, characterized by spontaneous bone fractures. We report here the initial analysis of the impact of the Gulo gene deletion on the murine gene expression profiles in the liver, femur and kidney.  相似文献   

7.
Cui J  Yuan X  Wang L  Jones G  Zhang S 《PloS one》2011,6(11):e27114
The traditional assumption that bats cannot synthesize vitamin C (Vc) has been challenged recently. We have previously shown that two Old World bat species (Rousettus leschenaultii and Hipposideros armiger) have functional L-gulonolactone oxidase (GULO), an enzyme that catalyzes the last step of Vc biosynthesis de novo. Given the uncertainties surrounding when and how bats lost GULO function, exploration of gene evolutionary patterns is needed. We therefore sequenced GULO genes from 16 bat species in 5 families, aiming to establish their evolutionary histories. In five cases we identified pseudogenes for the first time, including two cases in the genus Pteropus (P. pumilus and P. conspicillatus) and three in family Hipposideridae (Coelops frithi, Hipposideros speoris, and H. bicolor). Evolutionary analysis shows that the Pteropus clade has the highest ω ratio and has been subjected to relaxed selection for less than 3 million years. Purifying selection acting on the pseudogenized GULO genes of roundleaf bats (family Hipposideridae) suggests they have lost the ability to synthesize Vc recently. Limited mutations in the reconstructed GULO sequence of the ancestor of all bats contrasts with the many mutations in the ancestral sequence of recently emerged Pteropus bats. We identified at least five mutational steps that were then related to clade origination times. Together, our results suggest that bats lost the ability to biosynthesize vitamin C recently by exhibiting stepwise mutation patterns during GULO evolution that can ultimately lead to pseudogenization.  相似文献   

8.
Reaction of immunoprecipitated L-gulonolactone oxidase with glutaraldehyde allows multiple administrations of large amounts of this enzyme extracted from either chicken or rats to guinea pigs. L-Gulonolactone oxidase converts L-gulonolactone to ascorbic acid, and its absence from guinea pigs and primates results in their requirement for this vitamin. By administration of this enzyme guinea pigs are able to survive on an ascorbic-acid-deficient regimen.  相似文献   

9.
Das A  Dey N  Ghosh A  Das T  Chatterjee IB 《PloS one》2011,6(5):e20590

Background

The etiology of myelodysplastic syndromes (MDS) is largely unknown. Exposure to cigarette smoke (CS) is reported to be associated with MDS risk. There is inconsistent evidence that deficiency of NAD(P)H-quinone: oxidoreductase 1 (NQO1) increases the risk of MDS. Earlier we had shown that CS induces toxicity only in marginal vitamin C-deficient guinea pigs but not in vitamin C-sufficient ones. We therefore considered that NQO1 deficiency along with marginal vitamin C deficiency might produce MDS in CS-exposed guinea pigs.

Methodology and Principal Findings

Here we show that CS exposure for 21 days produces MDS in guinea pigs having deficiency of NQO1 (fed 3 mg dicoumarol/day) conjoint with marginal vitamin C deficiency (fed 0.5 mg vitamin C/day). As evidenced by morphology, histology and cytogenetics, MDS produced in the guinea pigs falls in the category of refractory cytopenia with unilineage dysplasia (RCUD): refractory anemia; refractory thrombocytopenia that is associated with ring sideroblasts, micromegakaryocytes, myeloid hyperplasia and aneuploidy. MDS is accompanied by increased CD34(+) cells and oxidative stress as shown by the formation of protein carbonyls and 8-oxodeoxyguanosine. Apoptosis precedes MDS but disappears later with marked decrease in the p53 protein. MDS produced in the guinea pigs are irreversible. MDS and all the aforesaid pathophysiological events do not occur in vitamin C-sufficient guinea pigs. However, after the onset of MDS vitamin C becomes ineffective.

Conclusions and Significance

CS exposure causes MDS in guinea pigs having deficiency of NQO1 conjoint with marginal vitamin C deficiency. The syndromes are not produced in singular deficiency of NQO1 or marginal vitamin C deficiency. Our results suggest that human smokers having NQO1 deficiency combined with marginal vitamin C deficiency are likely to be at high risk for developing MDS and that intake of a moderately large dose of vitamin C would prevent MDS.  相似文献   

10.
Our understanding of locomotor evolution in anthropoid primates has been limited to those taxa for which good postcranial fossil material and appropriate modern analogues are available. We report the results of an analysis of semicircular canal size variation in 16 fossil anthropoid species dating from the Late Eocene to the Late Miocene, and use these data to reconstruct evolutionary changes in locomotor adaptations in anthropoid primates over the last 35 Ma. Phylogenetically informed regression analyses of semicircular canal size reveal three important aspects of anthropoid locomotor evolution: (i) the earliest anthropoid primates engaged in relatively slow locomotor behaviours, suggesting that this was the basal anthropoid pattern; (ii) platyrrhines from the Miocene of South America were relatively agile compared with earlier anthropoids; and (iii) while the last common ancestor of cercopithecoids and hominoids likely was relatively slow like earlier stem catarrhines, the results suggest that the basal crown catarrhine may have been a relatively agile animal. The latter scenario would indicate that hominoids of the later Miocene secondarily derived their relatively slow locomotor repertoires.  相似文献   

11.
Guinea pigs cannot synthesize L-ascorbic acid because of their deficiency in L-gulono-gamma-lactone oxidase, a key enzyme for the biosynthesis of this vitamin in higher animals. In this study we isolated the L-gulono-gamma-lactone oxidase gene of the rat and the homologue of this gene of the guinea pig by screening rat and guinea pig genomic DNA libraries in lambda phage vectors, respectively, using a rat L-gulono-gamma-lactone oxidase cDNA as a probe. Sequencing analysis showed that the amino acid sequence of the rat enzyme is encoded by 12 exons and that all the intron/exon boundaries follow the GT/AG rule. On the other hand, regions corresponding to exons I and V were not identified in the guinea pig L-gulono-gamma-lactone oxidase gene homologue. Other defects found in this gene homologue are a deletion of the nucleotide sequence corresponding to a 3' 84-base pair part of rat exon VI, a 2-base pair deletion in the remaining exon VI-related region, and nonconformance to the GT/AG rule at one of the putative intron/exon boundaries. Furthermore, a large number of mutations were found in the amino acid-coding regions of the guinea pig sequence; more than half of them lead to nonconservative amino acid changes, and there are three stop codons as well. Thus it is clear that the guinea pig homologue of the L-gulono-gamma-lactone oxidase gene exists as a pseudogene that randomly accumulated a large number of mutations without functional constraint since the gene ceased to be active during evolution. On the basis of the neutral theory of evolution, the date of the loss of L-gulono-gamma-lactone oxidase in the ancestors of the guinea pig was roughly calculated to be less than 20 million years ago.  相似文献   

12.
Hyperbaric oxygen therapy is used to treat various clinical conditions, but it also causes oxidative damage. The objectives of this study are to determine if increased vitamin C intake can prevent hyperbaric oxygen-induced damage and to determine interactions among vitamin C, glutathione and vitamin E in response to oxidative stress. The growth rates of unexposed guinea pigs fed 1.25 mg vitamin C/day were indistinguishable from that of guinea pigs fed 50 mg vitamin C/day. In contrast, hyperbaric oxygen exposure resulted in growth retardation in guinea pigs fed 1.25 mg vitamin C/day, but it had little effect on the growth rates of guinea pigs fed 50 mg vitamin C/day. Increased vitamin C intake also prevented hyperbaric oxygen-induced lipid peroxidation in the liver. In guinea pigs not exposed to hyperbaric oxygen, levels of vitamin C in tissues were closely related to vitamin C intake, but tissue levels of glutathione and vitamin E were not related to vitamin C intake. However, interactions between vitamin C and glutathione were observed upon chronic hyperbaric oxygen exposure. Chronic hyperbaric oxygen exposure resulted in >2-fold increases in the levels of glutathione in liver and lung of guinea pigs fed 1.25 mg vitamin C/day. In comparison, the oxidation-induced increases in glutathione were significantly attenuated in guinea pigs fed 50 mg vitamin C/day. These data show that increased intake of vitamin C can prevent or alleviate the hyperbaric oxygen-induced damage. The interactions between vitamin C and glutathione upon hyperbaric oxygen exposure indicate that there is a homeostatic regulation of antioxidant capacity in guinea pig tissues.  相似文献   

13.
Fatty acid (FA) contents and compositions in the pectoral muscles of 18 bird species from Novosibirsk, Volgograd, and Yaroslavl oblasts were studied. Three groups of birds that had significantly different FA compositions were distinguished based on a multivariate statistical analysis: Passeriformes, Columbiformes, and a group of waterfowl and waterbird species (Charadriiformes, Anseriformes, Podicipediformes, and Ciconiiformes). The highest content of physiologically important docosahexaenoic acid (22:6n-3, DHA), which is considered a marker of aquatic food, was surprisingly found in the biomass of Passeriformes, which are terrestrial feeders, rather than in the biomass of waterfowls and waterbirds. It was suggested that Passeriformes species had the ability to synthesize large quantities of DHA from short-chain omega-3 FAs, which is rare among animals.  相似文献   

14.
Recently, several species of aerial‐hawking bats have been found to prey on migrating songbirds, but details on this behaviour and its relevance for bird migration are still unclear. We sequenced avian DNA in feather‐containing scats of the bird‐feeding bat Nyctalus lasiopterus from Spain collected during bird migration seasons. We found very high prey diversity, with 31 bird species from eight families of Passeriformes, almost all of which were nocturnally flying sub‐Saharan migrants. Moreover, species using tree hollows or nest boxes in the study area during migration periods were not present in the bats’ diet, indicating that birds are solely captured on the wing during night‐time passage. Additional to a generalist feeding strategy, we found that bats selected medium‐sized bird species, thereby assumingly optimizing their energetic cost‐benefit balance and injury risk. Surprisingly, bats preyed upon birds half their own body mass. This shows that the 5% prey to predator body mass ratio traditionally assumed for aerial hunting bats does not apply to this hunting strategy or even underestimates these animals’ behavioural and mechanical abilities. Considering the bats’ generalist feeding strategy and their large prey size range, we suggest that nocturnal bat predation may have influenced the evolution of bird migration strategies and behaviour.  相似文献   

15.
Pancreatic ribonuclease gene (RNASE1) was previously shown to have undergone duplication and adaptive evolution related to digestive efficiency in several mammalian groups that have evolved foregut fermentation, including ruminants and some primates. RNASE1 gene duplications thought to be linked to diet have also been recorded in some carnivores. Of all mammals, bats have evolved the most diverse dietary specializations, mainly including frugivory and insectivory. Here we cloned, sequenced and analyzed RNASE1 gene sequences from a range of bat species to determine whether their dietary adaptation is mirrored by molecular adaptation. We found that seven insect-eating members of the families Vespertilionidae and Molossidae possessed two or more duplicates, and we also detected three pseudogenes. Reconstructed RNASE1 gene trees based on both Bayesian and maximum likelihood methods supported independent duplication events in these two families. Selection tests revealed that RNASE1 gene duplicates have undergone episodes of positive selection indicative of functional modification, and lineage-specific tests revealed strong adaptive evolution in the Tadarida β clade. However, unlike the RNASE1 duplicates that function in digestion in some mammals, the bat RNASE1 sequences were found to be characterized by relatively high isoelectric points, a feature previously suggested to promote defense against viruses via the breakdown of double-stranded RNA. Taken together, our findings point to an adaptive diversification of RNASE1 in these two bat families, although we find no clear evidence that this was driven by diet. Future experimental assays are needed to resolve the functions of these enzymes in bats.  相似文献   

16.
The relaxin/insulin-like gene family is related to the insulin gene family, and includes two separate types of peptides: relaxins (RLNs) and insulin-like peptides (INSLs) that perform a variety of physiological roles including testicular descent, growth and differentiation of the mammary glands, trophoblast development, and cell differentiation. In vertebrates, these genes are found on three separate genomic loci, and in mammals, variation in the number and nature of genes in this family is mostly restricted to the Relaxin Family Locus B. For example, this locus contains a single copy of RLN in platypus and opossum, whereas it contains copies of the INSL6, INSL4, RLN2 and RLN1 genes in human and chimp. The main objective of this research is to characterize changes in the size and membership composition of the RLN/INSL gene family in primates, reconstruct the history of the RLN/INSL genes of primates, and test competing evolutionary scenarios regarding the origin of INSL4 and of the duplicated copies of the RLN gene of apes. Our results show that the relaxin/INSL-like gene family of primates has had a more dynamic evolutionary history than previously thought, including several examples of gene duplications and losses which are consistent with the predictions of the birth-and-death model of gene family evolution. In particular, we found that the differential retention of relatively old paralogs played a key role in shaping the gene complement of this family in primates. Two examples of this phenomenon are the origin of the INSL4 gene of catarrhines (the group that includes Old World monkeys and apes), and of the duplicate RLN1 and RLN2 paralogs of apes. In the case of INSL4, comparative genomics and phylogenetic analyses indicate that the origin of this gene, which was thought to represent a catarrhine-specific evolutionary innovation, is as old as the split between carnivores and primates, which took place approximately 97 million years ago. In addition, in the case of the RLN1 and RLN2 genes of apes our phylogenetic trees and topology tests indicate that the duplication that gave rise to these two genes maps to the last common ancestor of anthropoid primates. All these genomic changes in gene complement, which are particularly prevalent among anthropoid primates, might be linked to the many physiological and anatomical changes found in this group. Given the various roles of members of the RLN/INSL-like gene family in reproductive biology, it might be that changes in this gene family are associated to changes in reproductive traits.  相似文献   

17.
The nematode parasites Wuchereria bancrofti, Brugia malayi, and B. timori cause a disease in humans known as lymphatic filariasis, which afflicts approximately 120 million people worldwide. The parasites enter the human host from the mosquito either as L3 or as infective larvae and subsequently differentiate through 2 molts. In this article, we show that B. malayi depends on an exogenous source of vitamin C to complete the L3 to L4 molt, a critical morphogenic step in its life cycle. Brugia malayi apparently belongs to a small group of living organisms that depend on an exogenous source of vitamin C. This group includes only primates (including man) and guinea pigs among mammals.  相似文献   

18.
Immunocytochemical studies on parafollicular cells of various mammals   总被引:1,自引:0,他引:1  
Using specific antisera, calcitonin, calcitonin gene-related peptide (CGRP), somatostatin as well as neuron-specific enolase, chromogranin, secretory peptide I and calbindin (vitamin D-dependent calcium-binding protein) were looked for in parafollicular cells of rats, Syrian hamsters, Mongolian gerbils, mice, guinea pigs, rabbits and pigs. Calcitonin and CGRP were most invariably present in various species. Somatostatin was absent in mice and Mongolian gerbils and present in variable amounts in the remaining species. Neuron-specific enolase could not be detected in rabbits, while in the pigs and the Mongolian gerbils it could be demonstrated only in some parafollicular cells. Calbindin was present exclusively in parafollicular cells of guinea pigs. Chromogranin and secretory protein-I were present only in some animal species.  相似文献   

19.
20.
Antioxidants such as vitamins C and E have been reported to inhibit the progression of ultraviolet (UV) radiation‐induced pigmentation in the skin of hairless mice. However, little is known of the lightening effect of proanthocyanidin, a powerful polyphenolic antioxidant, on UV‐induced pigmentation of the skin. We investigated the lightening effect of oral administration of a proanthocyanidin‐rich grape seed extract (GSE) using guinea pigs with UV‐induced pigmentation. These pigmented guinea pigs were fed diets containing 1% GSE or 1% vitamin C (w/w) for 8 weeks. GSE‐feeding had an apparent lightening effect on the guinea pigs’ pigmented skin. Histologic evaluation demonstrated a decrease in the number of 3,4‐dihydroxyphenylalanine (DOPA)‐positive melanocytes as well as 8‐hydroxy‐2′‐deoxyguanosine (8‐OHdG)‐positive, Ki‐67‐positive, proliferating cell nuclear antigen (PCNA)‐positive melanin‐containing cells in the basal epidermal layer of the UV‐irradiated skin in GSE‐fed guinea pigs. In contrast, these parameters did not change in the skin of vitamin C‐fed or control guinea pigs. GSE inhibited the activity of mushroom tyrosinase and also inhibited melanogenesis without inhibiting the growth of cultured B16 mouse melanoma cells. In conclusion, we demonstrated that oral administration of GSE is effective in lightening the UV‐induced pigmentation of guinea pig skin. This effect may be related to the inhibition of melanin synthesis by tyrosinase in melanocytes and the reactive oxygen species (ROS)‐related proliferation of melanocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号