首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The identification of a consensus RNA motif often consists in finding a conserved secondary structure with minimum free energy in an ensemble of aligned sequences. However, an alignment is often difficult to obtain without prior structural information. Thus the need for tools to automate this process.  相似文献   

2.
This letter describes the construction and use of molecular models designed for the investigation of the coupled conformational properties of polypeptide structures. The models incorporate several degrees of conformational freedom that are not present in other varieties of models, and are in addition furnished with angle dials so that changes in torsional bond angles accompanying motion of the structure may be read out directly. The models are particularly useful in establishing the qualitative mechanical behavior of coupled structures. Once the mechanical behavior of the system is known, it becomes relatively straight-forward to compute the energetics of the system under study.  相似文献   

3.
We present a simulated annealing-based method for the prediction of the tertiary structures of proteins given knowledge of the secondary structure associated with each amino acid in the sequence. The backbone is represented in a detailed fashion whereas the sidechains and pairwise interactions are modeled in a simplified way, following the LINUS model of Srinivasan and Rose. A perceptron-based technique is used to optimize the interaction potentials for a training set of three proteins. For these proteins, the procedure is able to reproduce the tertiary structures to below 3 A in root mean square deviation (rmsd) from the PDB targets. We present the results of tests on twelve other proteins. For half of these, the lowest energy decoy has a rmsd from the native state below 6 A and, in 9 out of 12 cases, we obtain decoys whose rmsd from the native states are also well below 5 A.  相似文献   

4.
5.
Secondary structures of proteins were studied by recurrence quantification analysis (RQA). High-resolution, 3-dimensional coordinates of alpha-carbon atoms comprising a set of 68 proteins were downloaded from the Protein Data Bank. By fine-tuning four recurrence parameters (radius, line, residue, separation), it was possible to establish excellent agreement between percent contribution of alpha-helix and beta-sheet structures determined independently by RQA and that of the DSSP algorithm (Define Secondary Structure of Proteins). These results indicate that there is an equivalency between these two techniques, which are based upon totally different pattern recognition strategies. RQA enhances qualitative contact maps by quantifying the arrangements of recurrent points of alpha carbons close in 3-dimensional space. For example, the radius was systematically increased, moving the analysis beyond local alpha-carbon neighborhoods in order to capture super-secondary and tertiary structures. However, differences between proteins could only be detected within distances up to about 6-11 A, but not higher. This result underscores the complexity of alpha-carbon spacing when super-secondary structures appear at larger distances. Finally, RQA-defined secondary structures were found to be robust against random displacement of alpha carbons upwards of 1 A. This finding has potential import for the dynamic functions of proteins in motion.  相似文献   

6.
Mezei M 《Protein engineering》2003,16(10):713-715
A novel fingerprint, defined without the use of distances, is introduced to characterize protein folds. It is of the form of binary matrices whose elements are defined by angles between the C=O direction, the backbone axis and the line connecting the alpha-carbons of the various residues. It is shown that matches in the fingerprint matrices correspond to low r.m.s.d.  相似文献   

7.
The hydration of protein secondary structures   总被引:2,自引:0,他引:2  
D J Barlow  P L Poole 《FEBS letters》1987,213(2):423-427
The hydration of the main-chain carbonyl (CO) groups in proteins have been studied using infra-red spectroscopy, and computer-graphics analysis of high resolution protein crystal structures. The IR measurements indicate that the strength of water binding to the CO groups is lower in beta-sheet proteins compared with alpha-helical ones. Analysis of the protein crystal structures shows that this is due primarily to differences in the geometry of water-CO group interactions in the two types of secondary structure.  相似文献   

8.
Zhang W  Dunker AK  Zhou Y 《Proteins》2008,71(1):61-67
How to make an objective assignment of secondary structures based on a protein structure is an unsolved problem. Defining the boundaries between helix, sheet, and coil structures is arbitrary, and commonly accepted standard assignments do not exist. Here, we propose a criterion that assesses secondary structure assignment based on the similarity of the secondary structures assigned to pairwise sequence-alignment benchmarks, where these benchmarks are determined by prior structural alignments of the protein pairs. This criterion is used to rank six secondary structure assignment methods: STRIDE, DSSP, SECSTR, KAKSI, P-SEA, and SEGNO with three established sequence-alignment benchmarks (PREFAB, SABmark, and SALIGN). STRIDE and KAKSI achieve comparable success rates in assigning the same secondary structure elements to structurally aligned residues in the three benchmarks. Their success rates are between 1-4% higher than those of the other four methods. The consensus of STRIDE, KAKSI, SECSTR, and P-SEA, called SKSP, improves assignments over the best single method in each benchmark by an additional 1%. These results support the usefulness of the sequence-alignment benchmarks as a means to evaluate secondary structure assignment. The SKSP server and the benchmarks can be accessed at http://sparks.informatics.iupui.edu  相似文献   

9.
A relational database of protein structure has been developed to enable rapid and flexible enquiries about the occurrence of many aspects of protein architecture. The coordinates of 294 proteins from the Brookhaven Data Bank have been processed by standard computer programs to generate many additional terms that quantify aspects of protein structure. These terms include solvent accessibility, main-chain and side-chain dihedral angles, and secondary structure. In a relational database, the information is stored in tables with columns holding the different terms and rows holding the different entries for the terms. The different relational base tables store the information about the protein coordinate set, the different chains in the protein, the amino acid residues and ligands, the atomic coordinates, the salt bridges, the hydrogen bonds, the disulphide bridges and the close tertiary contacts. The database was established under ORACLE management system. Enquiries are constructed in ORACLE using SQL (structured query language) which is simple to use and alleviates the need for extensive computer programs. A single table can be searched for entries that meet various criteria, e.g. all protein solved to better than a given resolution. The power of the database occurs when several tables, or the entries in a single table, are cross-correlated. For example the dihedral angles of proline in the fourth position in an alpha-helix in high resolution structures can be rapidly obtained. The structural database provides a powerful tool to obtain empirical rules about protein conformation. This database of protein structures is part of a joint project between Birkbeck College and Leeds University to establish an integrated data resource of protein sequences and structures (ISIS) that encodes the complex patterns of residues and coordinates that define protein conformation. The entire data resource (ISIS) will provide a system to guide all areas of protein modelling including structure prediction, site-directed mutagenesis and de novo protein design. The availability of ISIS is described in the paper.  相似文献   

10.
This paper proposes a model for the expected probability distribution for a certain class of biological structures. In particular, a model is derived for the distribution of lengths of helices, sheets, turns, and coils as a function of the length of the structure divided by the length of the protein it is contained in. A fit between the derived lognormal function and the structures for some proteins whose three-dimensional structure is known was significant. The fit produces fundamental parameters particular to each structure type that are related to the underlying structure and its morphogenesis. The importance of the result is that a universal mathematical distribution can be used to explain certain protein morphogeneses. Also, these fundamental parameters can be used as an aid in predicting whether a given sequence is a particular secondary structure or not, without a knowledge of its three-dimensional structure.  相似文献   

11.
Sendai virus (SeV) is an enveloped virus with a non-segmented negative-strand RNA genome. SeV envelope fusion (F) glycoproteins play crucial roles in the viral life cycle in processes such as viral binding, assembly, and budding. In this study, we developed a viable recombinant SeV designated F-EGFP SeV/ΔF, in which the F protein was replaced by an F protein fused to EGFP at the carboxyl terminus. Living infected cells of the recombinant virus were directly visualized by green fluorescence. The addition of EGFP to the F protein maintained the activities of the F protein in terms of intracellular transport to the plasma membrane via the ER and the Golgi apparatus and fusion activity in the infected cells. These results suggest that this fluorescent SeV is a useful tool for studying the viral binding, assembly, and budding mechanisms of F proteins and the SeV life cycle in living infected cells.  相似文献   

12.
Rath A  Deber CM 《FEBS letters》2007,581(7):1335-1341
Membrane proteins that regulate solute movement are often built from multiple copies of an identical polypeptide chain. These complexes represent striking examples of self-assembling systems that recruit monomers only until a prescribed level for function is reached. Here we report that three modes of assembly - distinguished by sequence and stoichiometry - describe all helical membrane protein complexes currently solved to high resolution. Using the 13 presently available non-redundant homo-oligomeric structures, we show that two of these types segregate with protein function: one produces energy-dependent transporters, while the other builds channels for passive diffusion. Given such limited routes to functional complexes, membrane proteins that self-assemble exist on the edge of aggregation, susceptible to mutations that may underlie human diseases.  相似文献   

13.
Quantitative protein profiling using antibody arrays   总被引:4,自引:0,他引:4  
Barry R  Soloviev M 《Proteomics》2004,4(12):3717-3726
Traditional approaches to microarrays rely on direct binding assays where the extent of hybridisation and the signal detected are a measure of the analyte concentration in the experimental sample. This approach, directly imported from the nucleic acid field, may fail if applied to antibody-antigen interactions due to the shortage of characterised antibodies, the significant heterogeneity of antibody affinities, their dependence on the extent of protein modification during labelling and the inherent antibody cross-reactivity. These problems can potentially limit the multiplexing capabilities of protein affinity assays and in many cases rule out quantitative protein profiling using antibody microarrays. A number of approaches aimed at achieving quantitative protein profiling in a multiplex format have been reported recently. Of those reported, the three most promising routes include signal amplification, multicolour detection and competitive displacement approaches to multiplex affinity assays. One in particular, competitive displacement, also overcomes the problems associated with quantitation of affinity interactions and provides the most generic approach to highly parallel affinity assays, including antibody arrays.  相似文献   

14.
A consensus approach for the assignment of structural domains in proteins is presented. The approach combines a number of previously published algorithms, and takes advantage of the elevated accuracy obtained when assignments from the individual algorithms are in agreement. The consensus approach is tested on a data set of 55 protein chains, for which domain assignments from four automated methods were known, and for which crystallographers assignments had been reported in the literature. Accuracy was found to increase in this test from 72% using individual algorithms to 100% when all four methods were in agreement. However a consensus prediction using all four methods was only possible for 52% of the dataset. The consensus approach [using three publicly available domain assignment algorithms (PUU, DETECTIVE, DOMAK)] was then used to make domain assignments for a data set of 787 protein chains from the Protein Data Bank. Analysis of the assignments showed 55.7% of assignments could be made automatically, and of these, 13.5% were multi-domain proteins. Of the remaining 44.3% that could not be assigned by the consensus procedure 90.4% had their domain boundaries assigned correctly by at least one of the algorithms. Once identified, these domains were analyzed for trends in their size and secondary structure class. In addition, the discontinuity of each domain along the protein chain was considered.  相似文献   

15.
Yang Y  Zhou Y 《Proteins》2008,72(2):793-803
Proteins fold into unique three-dimensional structures by specific, orientation-dependent interactions between amino acid residues. Here, we extract orientation-dependent interactions from protein structures by treating each polar atom as a dipole with a direction. The resulting statistical energy function successfully refolds 13 out of 16 fully unfolded secondary-structure terminal regions of 10-23 amino acid residues in 15 small proteins. Dissecting the orientation-dependent energy function reveals that the orientation preference between hydrogen-bonded atoms is not enough to account for the structural specificity of proteins. The result has significant implications on the theoretical and experimental searches for specific interactions involved in protein folding and molecular recognition between proteins and other biologically active molecules.  相似文献   

16.
W C Johnson 《Proteins》1999,35(3):307-312
We have developed an algorithm to analyze the circular dichroism of proteins for secondary structure. Its hallmark is tremendous flexibility in creating the basis set, and it also combines the ideas of many previous workers. We also present a new basis set containing the CD spectra of 22 proteins with secondary structures from high quality X-ray diffraction data. High flexibility is obtained by doing the analysis with a variable selection basis set of only eight proteins. Many variable selection basis sets fail to give a good analysis, but good analyses can be selected without any a priori knowledge by using the following criteria: (1) the sum of secondary structures should be close to 1.0, (2) no fraction of secondary structure should be less than -0.03, (3) the reconstructed CD spectrum should fit the original CD spectrum with only a small error, and (4) the fraction of alpha-helix should be similar to that obtained using all the proteins in the basis set. This algorithm gives a root mean square error for the predicted secondary structure for the proteins in the basis set of 3.3% for alpha-helix, 2.6% for 3(10)-helix, 4.2% for beta-strand, 4.2% for beta-turn, 2.7% for poly(L-proline) II type 3(1)-helix, and 5.1% for other structures when compared with the X-ray structure.  相似文献   

17.
DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.  相似文献   

18.
We ascertained the ability to detect fibrillar β-lactoglobulin (BLG) of a series of mono-, tri-, penta-, and heptamethinecyanines based on benzothiazole and benzimidazole heterocycles, and of benzothiazole squaraine. Fluorescence properties of these cyanine dyes were measured in the unbound state and in the presence of monomeric and fibrillar BLG and compared with those for the commercially available benzothiazole dye Thioflavin T. The correlation between the chemical nature of the dye molecules and the ability of dyes to bind aggregated proteins was established. We found that meso-substituted cyanines with amino substituents in heterocycle in contrast to the corresponding unsubstituted dyes have a binding preference to fibrillar BLG and a noticeable fluorescence response in the presence of the aggregated protein. For the squaraines and benzimidazole penthamethinecyanines studied, fluorescence emission increased both in the presence of native and fibrillar protein. The trimethinecyanines T-49 and SH-516 exhibit specifically increased fluorescence in the presence of fibrillar BLG. These dyes demonstrated the same or higher emission intensity and selectivity to aggregated BLG as Thioflavin T, and are proposed for application in selective fluorescent detection of aggregated proteins.  相似文献   

19.
Scruggs AW  Flores CL  Wachter R  Woodbury NW 《Biochemistry》2005,44(40):13377-13384
Multiple-probe fluorescence imaging applications demand an ever-increasing number of resolvable probes, and the use of fluorophores with resolvable fluorescence lifetimes can help meet this demand. Green fluorescent protein (GFP) and its variants have been widely used in spectrally resolved multiprobe imaging, but as yet, there has not been a systematic set of mutants generated with resolvable lifetimes. Therefore, to generate such mutants, we have utilized error-prone PCR and fluorescence lifetime imaging to screen for mutants of UV-excited green fluorescent protein (GFPuv) that exhibit altered fluorescence decay lifetimes. This has resulted in the isolation of GFPuv mutants displaying at least three distinctly different lifetimes in the range of 1.9-2.8 ns. Mutation of Y145 to either histidine or cysteine was found to shift the fluorescence lifetime of GFPuv from 3.03 +/- 0.03 to 2.78 +/- 0.05 ns for the Y145H mutant and to 2.74 +/- 0.05 ns for Y145C. Some of the shorter-lifetime mutants exhibited excitation peaks that were red-shifted relative to their maximal absorption, indicating that the mutations allowed the adoption of additional conformations relative to wtGFPuv. The utility of these mutants for applications in simultaneous imaging and quantification is shown by the ability to quantify the composition of binary mixtures in time-resolved images using a single detector channel. The application of the screening method for generating lifetime mutants of other fluorescent proteins is also discussed.  相似文献   

20.
The thermoacidophilic crenarchaeote Sulfolobus acidocaldarius displays three distinct type IV pili-like structures on its surface: (i) the flagellum, (ii) the UV-induced pili and (iii) the adhesive pili. In bacteria, surface appendages play an important role in the spatial organization of cells from initial surface attachment to the development of mature community structures. To investigate the influence of the diverse set of type IV pili-like structures in S. acidocaldarius, single, double and triple mutants lacking the cell surface appendages were constructed and analysed for their behaviour in attachment assays and during biofilm formation. A heat stable green fluorescent protein was employed the first time in a hyperthermophilic archaeon. A codon adjusted eCGP123 was expressed to study mixed biofilms of different deletion mutants to understand the interplay of the surface structures during biofilm formation. During this process the deletion of the adhesive pili and UV-induced pili led to the most pronounced effects, either an increase in cell density or increased cluster formation respectively. However, all three cell surface appendages played a role in the colonization of surfaces and only the interplay of all three appendages leads to the observed wild-type biofilm phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号