首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The thioredoxin peptide Trp-Cys-Gly-Pro-Cys-Lys, which contains the redox active dithiol, was found to be reduced by lipoamide in a coupled reaction with lipoamide dehydrogenase and NADH. The reduced peptide in turn was shown to reduce insulin, oxidized lens protein and glyceraldehyde-3-phosphate dehydrogenase. While the peptide is not as effective a catalyst for utilizing pyridine nucleotides to reduce protein disulfides as thioredoxin, it offers a system which may be developed to provide more efficient disulfide reduction. This is particularly relevant since no thioredoxin peptides have been found to be active with thioredoxin reductase.  相似文献   

2.
1. Glutathione reductase and lipoamide dehydrogenase are structurally and mechanistically related flavoenzymes catalyzing various one and two electron transfer reactions between NAD(P)H and substrates with different structures. 2. The two enzymes differ in their coenzyme and functional specificities. Lipoamide dehydrogenase shows higher coenzyme preference while glutathione reductase displays greater functional specificity. 3. Binding preference of the two flavoenzymes for nicotinamide coenzymes is demonstrated by 31P-NMR spectroscopy. 4. The presence of arginines in glutathione reductase which is inactivated by phenyl glyoxal, is likely to be responsible for the NADPH-activity of glutathione reductase. 5. The substrate binding sites of the two enzymes are similar, though their functional details differ. 6. The active-site histidine of glutathione reductase functions primarily as the proton donor during catalysis. While the active-site histidine of lipoamide dehydrogenase stabilizes the thiolate anion intermediate and relays a proton in the catalytic process.  相似文献   

3.
Rose bengal sensitizes photoinactivation of lipoamide dehydrogenase from pig heart to a constant residual reductase activity resulting from specific destruction of histidine residues. The rate of sensitized photoinactivation is pH dependent and is associated with an ionizable group with pK 6.6 ± 0.2. All steady-state kinetic parameters are markedly reduced by photooxidation. Spectroscopic studies indicate the contribution of oxidized flavin/dithiol to the half-reduced form of the photooxidized enzyme. The proton magnetic resonance spectrum of lipoamide dehydrogenase shows resolved histidine C2 proton peak at δ9.18 ppm and a shoulder at δ9.23 ppm. The shoulder protons are eliminated by the sensitized photooxidation and shifted upfield on deprotonation. At high pH, the characteristic Faraday A term also disappears. These observations suggest that the essential histidine stabilizes the nascent thiolate via the ion pair formation to facilitate the reductase reaction catalyzed by lipoamide dehydrogenase.  相似文献   

4.
The oxidation-reduction potential, E2, for the couple oxidized lipoamide dehydrogenase/2-electron reduced lipoamide dehydrogenase has been determined by measurement of equilibria of these enzyme species with lipoamide and dihydrolipoamide or with oxidized and reduced azine dyes. E2 is -0.280 V at pH 7, and deltaE2/deltapH is -0.06 V in the pH range 5.5 to 7.6. Values for E1, the oxidation-reduction potential for the couple 2-electron reduced enzyme/4-electron reduced enzyme, were obtained from measurements of the extent of dismutation of 2-electron reduced enzyme to form mixtures containing oxidized and 4-electron reduced enzyme. E1 is -0.346 V at pH 7, and deltaE1/deltapH is -0.06 V in the pH range 5.7 to 7.6. Spectra of oxidized enzyme and 4-electron reduced enzyme do not show variations with pH over this range, but the spectrum of the 2-electron reduced enzyme is pH-dependent, with the molar extinction at 530 nm changing from 3250 M-1 cm-1 at pH 8 to 2050 M-1 cm-1 at pH 5.2. The pH-dependent changes which are observed in the absorption properties of the 2-electron reduced enzyme are consistent with the disappearance of a charge transfer complex between an amino acid side chain and the oxidized flavin at the lower pH values, with the apparent pK of the side chain at pH 5. It has been suggested that the 530 nm absorbance of 2-electron reduced enzyme is due to a charge transfer complex between thiolate anion and oxidized flavin, and we propose that the thiolate anion is stabilized by interaction with a protonated base. The thermodynamic data predict that the amount of 4-electron reduced enzyme formed when the enzyme is reduced by excess NADH will be pH-dependent, with the greatest amounts seen at low pH values. These data support earlier evidence (Matthews, R.G., Wilkinson, K.D., Ballou, D,P., and Williams, C.H., Jr. (1976) in Flavins and Flavoproteins (Singer, T.P., ed) pp. 464-472; Elsevier Scientific Publishing Co., Amsterdam) that the role of NAD+ in the NADH-lipoamide reductase reaction catalyzed by lipoamide dehydrogenase is to prevent accumulation of inactive 4-electron reduced enzyme by simple reversal of the reduction of 2-electron reduced enzyme by NADH.  相似文献   

5.
A weak NADH oxidase activity of lipoamide dehydrogenase at neutral pH is increased as much as 15-fold by the addition of KI or (NH4)2SO4. The addition of NAD+ shifts the optimum pH for the KI-induced oxidase activity from 6.3 to 5.5 without changing the maximum activity. The optimum pH is similarly shifted to 5.6 when sulfhyldryl groups of the enzyme are oxidized in the presence of small amount of cupric ion. The NADH: lipoamide and NADH: p-benzoquinone reductase activities are strongly inhibited by KI but both are increased by the presence of (NH4)2SO4. The known intermediate having a charge-transfer band at 530 nm can be seen upon an addition of NADH to the enzyme in the presence of (NH4)2SO4 but not in the presence of KI. The enzyme flavin is reductase by a stoichiometric amount of NADH when KI is present.  相似文献   

6.
Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.  相似文献   

7.
The flavoprotein mercuric reductase catalyzes the two-electron reduction of mercuric ions to elemental mercury using NADPH as an electron donor. It has now been purified from Pseudomonas aeruginosa PAO9501 carrying the plasmid pVS1. In this plasmid system, where the mer operon is on the transposon Tn501, mercuric reductase comprises up to 6% of the soluble cellular protein upon induction with mercurials. The purification is a rapid (two-step), high yield (80%) procedure. Anaerobic titrations of mercuric reductase with dithionite revealed the formation of a charge transfer complex with an absorbance maximum around 540 nm. Striking spectroscopic similarities to lipoamide dehydrogenase and glutathione reductase were observed. These two enzymes, which catalyze the transfer of electrons between pyridine nucleotides and disulfides, are flavoproteins which contain an oxidation-reduction-active cysteine residue at the active site. The expectation that mercuric reductase contains a similar electron acceptor was confirmed when it was shown that mercuric reductase has the capacity to accept four electrons per FAD-containing subunit, and that two thiols become kinetically titrable by 5,5'-dithiobis-(2-nitrobenzoate) upon reduction with NADPH. These are characteristic features of the disulfide reductase class of flavoproteins. Further similarities with at least one of these enzymes, lipoamide dehydrogenase, include the E/EH2 midpoint potential (-269 mV), fluorescence properties, and extinction coefficients of E and EH2. Preliminary observations relevant to an understanding of the mechanism of mercuric reductase are discussed.  相似文献   

8.
Glucose-6-phosphate dehydrogenase purified from Saccharomyces cerevisiae is rapidly inactivated by diethylpyrocarbonate at pH 6.8 and 30 degrees C with a concomitant increase in absorbance at 242 nm. The second-order rate constant for inactivation was calculated to be 487.8 M-1 min-1. The pH dependence of inactivation suggests the involvement of an amino acid residue having a pKa of 6.77. These results indicate that the inactivation is due to the modification of a histidine residue(s). In the presence of substrate, glucose-6-phosphate or NADP+, the rate of inactivation is decreased, indicating that the essential histidine residue(s) is located at the active site, possibly at the region of overlap of substrates at the binding site.  相似文献   

9.
The binding of pyridine nucleotide to human erythrocyte glutathione reductase, an enzyme of known three-dimensional structure, requires some movement of the side chain of Tyr197. Moreover, this side chain lies very close to the isoalloxazine ring of the FAD cofactor. The analogous residue, Ile184, in the homologous enzyme Escherichia coli lipoamide dehydrogenase has been altered by site-directed mutagenesis to a tyrosine residue (I184Y) [Russell, G. C., Allison, N., Williams, C. H., Jr., & Guest, J.R. (1989) Ann. N.Y. Acad. Sci. 573, 429-431]. Characterization of the altered enzyme shows that the rate of the pyridine nucleotide half-reaction has been markedly reduced and that the spectral properties have been changed to mimic those of glutathione reductase. Therefore, Ile184 is shown to be an important residue in modulating the properties of the flavin in lipoamide dehydrogenase. Turnover in the dihydrolipoamide/NAD+ reaction is decreased by 10-fold and in the NADH/lipoamide reaction by 2-fold in I184Y lipoamide dehydrogenase. The oxidized form of I184Y shows remarkable changes in the fine structure of the visible absorption and circular dichroism spectra and also shows nearly complete quenching of FAD fluorescence. The spectral properties of the altered enzyme are thus similar to those of glutathione reductase and very different from those of wild-type lipoamide dehydrogenase. On the other hand, spectral evidence does not reveal any change in the amount of charge-transfer stabilization at the EH2 level. Stopped-flow data indicate that, in the reduction of I184Y by NADH, the first step, reduction of the flavin, is only slightly slowed but the subsequent two-electron transfer to the disulfide is markedly inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Comparisons have been made between the active center geometries of lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase, chymotrypsin and papain, and glyceraldehyde-3-phosphate dehydrogenase and papain. In the dehydrogenases, orientation of the nicotinamide ring about the glycosidic bond is determined by the substrate stereochemistry. The proper positioning of the carboxyamide moiety allows for the close approach of the C4 atom on the nicotinamide and the reactive carbon of the substrate. It follows that, once the conformation of the substrate or substrate intermediate has been established with respect to the functional groups in the enzyme, the A- or B-side specificity of the nicotinamide ring is predetermined. Hence, dehydrogenases which are divergently evolving from a common precursor must maintain the nicotinamide specificity if the protein fold of the catalytic domain is conserved. The tetrahedral intermediates produced during acylation of chymotrypsin and papain are found to be of opposite hand, while those of papain and glyceraldehyde-3-phosphate dehydrogenase can be regarded to be of the same hand. Thus the serine proteases, subtilisin and those of the chymotrypsin family, are of one hand while the cysteine enzymes, glyceraldehyde-3-phosphate dehydrogenase and papain, are of the other.  相似文献   

11.
The lipoamide dehydrogenase of the glycine decarboxylase complex was purified to homogeneity (8 U/mg) from cells of the anaerobe Eubacterium acidaminophilum that were grown on glycine. In cell extracts four radioactive protein fractions labeled with D-[2-14C]riboflavin could be detected after gel filtration, one of which coeluted with lipoamide dehydrogenase activity. The molecular mass of the native enzyme could be determined by several methods to be 68 kilodaltons, and an enzyme with a molecular mass of 34.5 kilodaltons was obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblot analysis of cell extracts separated by sodium dodecyl sulfate-polyacrylamide or linear polyacrylamide gel electrophoresis resulted in a single fluorescent band. NADPH instead of NADH was the preferred electron donor of this lipoamide dehydrogenase. This was also indicated by Michaelis constants of 0.085 mM for NADPH and 1.1 mM for NADH at constant lipoamide and enzyme concentrations. The enzyme exhibited no thioredoxin reductase, glutathione reductase, or mercuric reductase activity. Immunological cross-reactions were obtained with cell extracts of Clostridium cylindrosporum, Clostridium sporogenes, Clostridium sticklandii, and bacterium W6, but not with extracts of other glycine- or purine-utilizing anaerobic or aerobic bacteria, for which the lipoamide dehydrogenase has already been characterized.  相似文献   

12.
1. Benzofuroxan (benzofurazan 1-oxide, benzo-2-oxa-1,3-diazole N-oxide) was evaluated as a specific chromophoric oxidizing agent for thiol groups. 2. Aliphatic thiol groups both in low-molecular-weight molecules and in the enzymes papain (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4) readily reduce benzofuroxan to o-benzoquinone dixime; potential competing reactions of amino groups are negligibly slow. 3. The fate of the thiol depends on its structure: a mechanism is proposed in which the thiol and benzofuroxan form an adduct which, if steric factors permit, reacts with another molecule of thiol to form a disulphide; when the thiol is located in the active site of a thiol proteinase and steric factors preclude enzyme dinner formation, the adduct reacts instead with water or HO- to form a sulphenic acid; attack on the sulphur atom of the adduct by either a sulphur or oxygen nucleophile releases o-benzoquinone dioxine. 4. Benzofuroxan contains n o proton-binding sites with pKa values in the range 3-10 and probably none in the range 0-14; o-benzoquinone dioxine undergoes a one-proton ionization with pKa=6.75.5. o-benzoquinone dioxime absorbs strongly at wavelengths greater than 410nm, where absorption by benzofuroxan, proteins and simple thiol compounds is negligible; 416 nm is an isosbestic point (epsilon 416 = 5110 litre. mol-1-cm-1); epsilon430=3740+[1460/(1+[H+]/Ka)] where pKa=6.75. 6. The possibility of acid-base catalysis of the oxidation by active-centre histidine residues of the thiol proteinases is discussed.  相似文献   

13.
Three amino acid residues in the active site of lipoamide dehydrogenase from Azotobacter vinelandii were replaced by other residues. His450, the active-site base, was changed into Ser, Tyr and Phe. Pro451, in cis conformation, was changed into Ala. Glu455 was replaced with Asp and Gln. Absorption, fluorescence and CD spectroscopy of the mutated enzymes in their oxidized state (Eox) showed only minor changes with respect to the wild-type enzyme, whereas considerable changes were observed in the spectra of the two-electron-reduced (EH2) species of the enzymes upon reduction by the substrate dihydrolipoamide. Differences in extent of reduction of the flavin by NADH indicate that the redox potential of the flavin is altered by the mutations. Enzyme Pro451----Ala [corrected] showed the greatest deviation from wild type. The enzyme is very easily over-reduced to the four-electron reduced state (EH4) by dihydrolipoamide. This is probably due to a change in the backbone conformation caused by the cis-trans conversion. From studies on the pH dependence of the thiolate charge-transfer absorption and the relative fluorescence of EH2 of the enzymes, it is concluded that mutation of His450 results in a relatively simple and easily interpreted distribution of electronic species at the EH2 level. For all three His450-mutated enzymes an apparent pKa1 near 5.5 is calculated that is assigned to the interchange thiol. A second apparent pKa2 is calculated of 6.9, 7.5 and 7.1 for the His450----Phe, -Ser and -Tyr enzymes, respectively, and signifies the deprotonation of the tautomeric equilibrium between the interchange and charge-transfer thiols. The difference in apparent pKa2 values between the His450-mutated enzymes is explained by changes in micropolarity. At the EH2 level the wild-type enzyme consists of multiple electronic forms as reported for the Escherichia coli enzyme [Wilkinson, K. D. and Williams C. H. Jr (1979) J. Biol. Chem. 254, 852-862]. Based on the results obtained with the His450-mutated enzymes, it is concluded that the lowest pKa is associated with the interchange thiol. A model for the equilibrium species of the wild-type enzyme at the EH2 level is presented which takes three pKa values into account. The results of the pH dependence of the electronic species at the EH2 level of Glu455-mutated enzymes essentially follow the model proposed for the wild-type enzyme. However mutation of Glu455 shifts the tautomeric equilibrium of EH2 in favor of the charge-transfer species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Lipoamide dehydrogenase (EC 1.6.4.3) from the ketoglutarate dehydrogenase complex of adrenals catalyzes the oxidation of NADH by lipoamide and quinone compounds according to the "ping-pong" scheme. The catalytic constants of these reactions are equal to 220 and 24 s-1, respectively (pH 7.0). The maximal quinone reductase activity is observed at pH 5.6, whereas the lipoamide reductase activity changes insignificantly at pH 7.5-5.5. The maximal dihydrolipoamide-NAD+ reductase activity is observed at pH 7.8. The oxidative constants of quinone electron acceptors vary from 6 X 10(6) to 4 X 10(2) M-1 s-1 and increase with their redox potential. The patterns of NAD+ inhibition in the quinone reductase reaction differ from that of lipoamide reductase reaction. The quinones are reduced by lipoamide dehydrogenase in the one-electron mechanism.  相似文献   

15.
Ultraviolet difference spectroscopy of the binary complex of isozyme 4-4 of rat liver glutathione S-transferase with glutathione (GSH) and the enzyme alone or as the binary complex with the oxygen analogue, gamma-L-glutamyl-L-serylglycine (GOH), at neutral pH reveals an absorption band at 239 nm (epsilon = 5200 M-1 cm-1) that is assigned to the thiolate anion (GS-) of the bound tripeptide. Titration of this difference absorption band over the pH range 5-8 indicates that the thiol of enzyme-bound GSH has a pKa = 6.6, which is about 2.4 pK units less than that in aqueous solution and consistent with the kinetically determined pKa previously reported [Chen et al. (1988) Biochemistry 27, 647]. The observed shift in the pKa between enzyme-bound and free GSH suggests that about 3.3 kcal/mol of the intrinsic binding energy of the peptide is utilized to lower the pKa into the physiological pH range. Apparent dissociation constants for both GSH and GOH are comparable and vary by a factor of less than 2 over the same pH range. Site occupancy data and spectral band intensity reveal large extinction coefficients at 239 nm (epsilon = 5200 M-1 cm-1) and 250 nm (epsilon = 1100 M-1 cm-1) that are consistent with the existence of either a glutathione thiolate (E.GS-) or ion-paired thiolate (EH+.GS-) in the active site. The observation that GS- is likely the predominant tripeptide species bound at the active site suggested that the carboxylate analogue of GSH, gamma-L-glutamyl-(D,L-2-aminomalonyl)glycine, should bind more tightly than GSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ubiquinol is a powerful antioxidant, which is oxidized in action and needs to be replaced or regenerated to be capable of a sustained effort. This article summarises current knowledge of extramitochondrial reduction of ubiquinone by three flavoenzymes, i.e. lipoamide dehydrogenase, glutathione reductase and thioredoxin reductase, belonging to the same pyridine nucleotide-disulfide oxidoreductase family. These three enzymes are the most efficient extramitochondrial ubiquinone reductases so far described. The reduction of ubiquinone by lipoamide dehydrogenase and glutathione reductase is potently stimulated by zinc and the highest rate of reduction is achieved at acidic pH and the rates are equal with either NADPH or NADH as co-factors. The most efficient ubiquinone reductases are mammalian cytosolic thioredoxin reductases, which are selenoenzymes with a number of biological functions. Reduction of ubiquinone by thioredoxin reductase is in contrast to the other two enzymes investigated, inhibited by zinc and shows a sharp physiological pH optimum at pH 7.5. Furthermore, the reaction is selenium dependent as revealed from experiments using truncated and mutant forms of the enzyme and also in a cellular context by selenium treatment of transfected thioredoxin reductase overexpressing stable cell lines. The reduction of ubiquinone by the three enzymes offers a multifunctional system for extramitochondrial regeneration of an important antioxidant.  相似文献   

17.
Papain [EC 3.4.22.2] was photooxidized using methylene blue as a sensitizer. The photooxidzed enzyme lost its caseinolytic activity and had significantly decreased histidine and tryptophan contents. The tyrosine content was the same before and after the photooxidation. The SH content of the photooxidized enzyme, as determined after reduction with dithiothreitol, was also unchanged. The loss of histidine was always slower than the loss of enzymatic activity, being less than one residue per molecule even when the enzymatic activity was completely lost. However, the inactivation and the oxidation of a histidine residue were pH-dependent in a similar fashion in the pH range of 5.0-8.0, the pH profiles conforming to theoretical titration curves with apparent pKa values of 6.6 and 6.7, respectively. The fact that the ionization of a histidine residue in papain has a normal imidazole pKa value is entirely in accord with the finding for stem bromelain [EC 3.4.22.4] (Murachi, T., Tsudzuki, T., & Okumura, K. (1975) Biochemistry 14, 249-255), and is of great significance in relation to the mechanism of catalysis by these enzymes.  相似文献   

18.
Oral administration of K2Cr2O7 to male albino rats at an acute dose of 1500 mg/kg body wt/day for 3 days brought about sharp decrease in the activities of glucose-6-phosphate dehydrogenase and glutathione reductase of kidney epithelial cells. The scavenging system of kidney epithelium is also affected as evident by the highly significant fall in the activities of glutathione peroxidase, superoxide dismutase and catalase which ultimately leads to the increase in lipid peroxidation value in kidney cortical homogenate. However, glutathione-s-transferase activity in cytosol and glutathione and total thiol content in cortical homogenate were not altered. Chronic oral administration of K2Cr2O7 (300 mg/kg body wt/day) for 30 days to rats lead to elevation in the activities of glutathione peroxidase, glutathione reductase, glutathione-s-transferase, superoxide dismutase and catalase with no change in glucose-6-phosphate dehydrogenase activity in epithelial cells. This might lead to the increase in glutathione and total thiol status and decrease in lipid peroxidation value in whole homogenate system.  相似文献   

19.
The catalytically essential amino acid, histidine 176, in the active site of Escherichia coli glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been replaced with an asparagine residue by site-directed mutagenesis. The role of histidine 176 as a chemical activator, enhancing the reactivity of the thiol group of cysteine 149, has been demonstrated, with iodoacetamide as a probe. The esterolytic properties of GAPDH, illustrated by the hydrolysis of p-nitrophenyl acetate, have been also studied. The kinetic results favor a role for histidine 176 not only as a chemical activator of cysteine 149 but also as a hydrogen donor facilitating the formation of tetrahedral intermediates. These results support the hypothesis that histidine 176 plays a similar role during the oxidative phosphorylation of glyceraldehyde 3-phosphate.  相似文献   

20.
Physical interaction between rabbit muscle glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase was detected by means of matrix immobilization technique. Glyceraldehyde-3-phosphate dehydrogenase covalently bound to CNBr-activated Sepharose 4B was capable of forming a complex with soluble lactate dehydrogenase with a stoichiometry of 0.8 mole of lactate dehydrogenase per mole of glyceraldehyde-3-phosphate dehydrogenase and KD of 0.385 microM at pH 6.5. The bienzyme association weakened when pH changed to 7.0 (the KD increased to 1.25 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号