首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A controlled, quantitative histochemical study was performed in five piglets to establish changes in undermined and not undermined stretched skin. The skin was stretched with a stretching device for 30 minutes to close a large skin defect. On each flank of the piglet, at a standard position, 9 x 9-cm wounds were created under general anesthesia. On one flank, the surrounding skin was undermined cranially and caudally over a 10-centimeter area. Sections of skin biopsies obtained during stretching were stained with picrosirius red and studied with routine light microscopy and polarized light microscopy in combination with image analysis. The length of collagen fibers was analyzed as a parameter of changes in the dermis resulting from skin stretching. This newly developed quantitative method appeared to be valid, specific, and reproducible, allowing for objective determination of changes in the length of the fibers in the plain of the sections. Changes in the orientation of collagen fibers in the dermis as a result of skin stretching were thereby determined. Epidermal thickness did not change significantly under the influence of stretching forces in both undermined and not undermined skin. However, the orientation of the collagen fibers changed significantly as a result of skin stretching. In undermined wounds, parallel alignment and elongation of the fibers in the plane of the sections was already observed after 15 minutes of stretching. The fibers became aligned in the direction of the stretching force, perpendicular to the wound margin. After 30 minutes of stretching, the mean major axes of the collagen fibers were longest in the plane of the sections (p < 0.001). This meant that elongation and parallel alignment of the collagen fibers had occurred. Stretching of not undermined skin for 15 minutes resulted in significantly stronger parallel alignment in the plane of the sections as compared with undermined skin. This was less well defined after 30 minutes of stretching in not undermined skin. It is concluded that skin stretching with a skin-stretching device for 30 minutes results in significant histomorphological changes of collagen fibers in the dermis of both undermined and not undermined skin. The fibers realign rapidly as a result of stretching forces and become aligned in the direction of the stretching force, perpendicular to the wound margin. These dynamic changes in collagen fibers explain the significantly decreased wound closing tension resulting from skin stretching and explain how skin stretches beyond its inherent extensibility.  相似文献   

2.
The aorta possesses a micro-architecture that imparts and supports a high degree of compliance and mechanical strength. Alteration of the quantity and/or arrangement of the main load-bearing components of this micro-architecture – the elastin and collagen fibers – leads to mechanical, and hence functional, changes associated with aortic disease and aging. Therefore, in the future, the ability to rigorously characterize the wall fiber micro-architecture could provide insight into the complicated mechanisms of aortic wall remodeling in aging and disease. Elastin and collagen fibers can be observed using state-of-the-art multi-photon microscopy. Image-analysis algorithms have been effective at characterizing fibrous constructs using various microscopy modalities. The objective of this study was to develop a custom MATLAB-language automated image-based analysis tool to describe multiple parameters of elastin and collagen micro-architecture in human soft fibrous tissue samples using multi-photon microscopy images. Human aortic tissue samples were used to develop the code. The tool smooths, cleans and equalizes fiber intensities in the image before segmenting the fibers into a binary image. The binary image is cleaned and thinned to a fiber skeleton representation of the image. The developed software analyzes the fiber skeleton to obtain intersections, fiber orientation, concentration, porosity, diameter distribution, segment length and tortuosity. In the future, the developed custom image-based analysis tool can be used to describe the micro-architecture of aortic wall samples in a variety of conditions. While this work targeted the aorta, the software has the potential to describe the architecture of other fibrous materials, tube-like networks and connective tissues.  相似文献   

3.
Two-photon confocal microscopy is a new technology useful in nondestructive analysis of tissue. The pattern generated from laser-excited autofluorescence and second harmonic signals can be analyzed to construct a three-dimensional, microanatomical, structural image. The healing of full-thickness guinea pig skin wounds was studied over a period of 28 days using two-photon confocal microscopy. Three-dimensional data were rendered from two-dimensional images and compared with conventional, en face, histologic sections. Two-photon confocal microscopy images show resolution of muscle, fascia fibers, collagen fibers, inflammatory cells, blood vessels, and hair. Although these images do not currently have the resolution of standard histology, the ability to noninvasively acquire three-dimensional images of skin promises to be an important tool in wound-healing studies.  相似文献   

4.
Polarization‐dependent second‐harmonic generation (P‐SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three‐dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference and , where the latter is a newly extracted parameter from the P‐SHG images and is related to the chiral structure of collagen. The is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P‐SHG imaging was performed using a linear polarization‐in polarization‐out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation‐independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.   相似文献   

5.
A low-cost, high-resolution (spatial and temporal) image analysis system was developed to measure sarcomere length (Sl) during fast twitch of isolated striated muscle fibers at different temperatures. Fiber images were examined during twitch with an imaging rate of 220 Hz. To increase temporal resolution beyond 220 Hz, consecutive temporally shifted image sequences (N sequences) were acquired. Individual or average Sl was directly measured from a horizontal profile without spatial-frequency assessment. Measurement precision (E) was determined and expressed as: E(%) = 100xPs/(IsxSl), where Ps is the pixel size and Is the involved sarcomere number. At 18 degrees C during isometric twitch, Sls were measured with 220 Hz temporal and 0.2% spatial resolutions. Sl shortened in the central region (0.21+/-0.12 microm) as tension developed, reaching a maximal shortening of 8.09 + 2.05% (at rest, Sl = 2.59+/-0.05 microm, n = 4) in 32.5+/-1.96 ms. At 30 degrees C, Sl variations were examined with 880 Hz temporal resolution, in which case maximal S1 shortening was reached in 15.74+/-1.99 ms, and then decreased to 5.19+/-1.97% (at rest, S1 = 2.6+/-0.06 microm). The twitch tension developed by the whole fiber was recorded and compared with sarcomere length behavior. Sarcomere length variations in the central region were representative of overall developed tensions at 18 and 30 degrees C.  相似文献   

6.
Although elucidation of the mechanism of aortic aneurysm rupture is important, the characteristics of crack initiation and propagation sites remain unknown. To determine the microscopic properties of these sites, the characteristics of local strains and constituents at crack initiation and propagation sites were investigated during biaxial stretching of porcine thoracic aortas (PTAs). PTAs were sliced into approximately 50-\(\upmu \hbox {m}\)-thick sections, and the center of the sections was made especially thin using our previously developed technique. Alpha-elastin and cell nuclei were fluorescently labeled as indices of local elastin density and as a strain marker, respectively. Birefringence and second harmonic generation (SHG) light images were used to determine local collagen distributions. The specimens were then stretched biaxially with a laboratory-made tensile tester under a fluorescent microscope equipped with a birefringence imaging system. Local strains were calculated from the local displacement of the cell nuclei. The degree of alignment and density of local collagen fibers were measured from retardance and SHG images. The strain distributions, specifically the first and second principal, and maximum shear strains, fluorescent intensity of \(\upalpha \)-elastin, and degree of alignment of collagen fibers, showed insignificant differences between the crack initiation sites and other sites. The retardance and intensity of SHG light at the crack initiation sites were significantly lower than those at other sites for all (\(n = 6\)) specimens. Cracks tended to propagate along the local direction of the collagen fibers. These results indicate that the local density and direction of collagen fibers play an important role in aorta rupture.  相似文献   

7.
To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.  相似文献   

8.
A method is presented that can be used to perform histochemical and morphometric analyses on the same muscle fiber. Freshly dissected fibers from medial gastrocnemius muscle of adult guinea pig were kept at a resting length and rapidly frozen. Serial frozen cross-sections were cut and reacted for myofibrillar adenosine triphosphatase and succinic dehydrogenase. The adjacent section, while still frozen, was immersed into 20 degrees C glutaraldehyde fixative to which EGTA was added to minimize artifactious contraction. The fixed section was processed for electron microscopy and the section rotated before thin sectioning to give longitudinal sections enabling study of sarcomeres. Ultrastructure was well-preserved despite slight disorganization of the contractile filaments and some vesiculation of the sarcoplasmic reticulum. The Z line width was measured and the mitochondrial volume fraction estimated by point counting morphometry from 89 fibers. The fibers with dark myofibrillar adenosine triphosphatase staining have Z widths of 547 +/- 165 A (n=69) and thoshosphatase staining have Z widths of 547 +/- 165 A (n=69) and those with light stain have 1023 +/- 113 A (n=20). The density of the succinic dehydrogenase reaction product in the fibers was divided into dark and light and the mitochondrial volume fractions were foud to be 4.3 +/- 2.1% (n=52) and 1.0 +/- 1.1% (n=37), respectively.  相似文献   

9.
The collagen network in skin is largely responsible for the nonlinear mechanical stress-strain response of skin. We hypothesize that the force-stretch response of collagen is governed by the entropics of long-chain molecules. We show that a constitutive model derived from the statistical mechanics of long-chain molecules, corresponding to the fibrous collagen network in skin, captures the mechanical response of skin. A connection between the physiologically meaningful parameters of network molecular chain density and free length of collagen fibers and the constitutively significant parameters of initial modulus and limiting stretch is thus established. The relevant constitutive law is shown to have predictive capabilities related to skin histology by replicating in vivo and in vitro experimental results. From finite element simulations, this modeling approach predicts that the collagen network in hypertrophic scars is more dense and the constituent collagen fibers have shorter free lengths than in healthy skin. Additionally, the model is shown to predict that as rat skin ages, collagen network density increases and fiber free length decreases. The importance of knowledge of the in situ stress state for analyzing skin response and validating constitutive laws is also demonstrated.  相似文献   

10.
Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a two‐dimensional discrete Fourier transform (DFT)–based method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid‐stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide‐angle X‐ray scattering and application of the presented method to other fibrous tissues.   相似文献   

11.
To explore the effects of growth retardation, caused by restricted protein intake, on collagen turnover in the whole skin, Sprague-Dawley rats (n = 20) were labelled with 18O2 and fed on either an adequate (18%) or a low (3%) lactalbumin diet. Skin biopsies were obtained at intervals during the following 6 months. Independent groups of animals (n = 186) were used to determine the size of the 0.5 M-acetic acid-soluble and -insoluble collagen pools in the entire skin of healthy and malnourished rats. Collagen was estimated by measurement of hydroxyproline. Soluble-collagen synthesis rates were equivalent to 99 +/- 8 mumol of hydroxyproline/day in healthy animals and 11 +/- 2 mumol/day in malnourished rats. Insoluble-collagen synthesis rates were 32 and 5 mumol of hydroxyproline/day in the healthy and protein-depleted rats respectively. The degradation of soluble collagen amounted to 37 +/- 8 and 6 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Efflux of collagen from the soluble collagen, defined as the sum of the rate of soluble collagen that is degraded plus that which matures into insoluble collagen, was 70 +/- 8 and 11 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Insoluble collagen was not degraded in either group. The fraction of soluble collagen leaving the pool that was converted into insoluble collagen was 0.46 in both diet groups. It is concluded that the turnover of soluble collagen is markedly decreased with malnutrition, but degradation and conversion into insoluble collagen account for the same proportions of efflux from the soluble-collagen pool as in rapidly growing rats.  相似文献   

12.
Denervation or inactivity is known to decrease the mass and alter the phenotype of muscle and the mechanics of tendon. It has been proposed that a shift in the collagen of the extracellular matrix (ECM) of the muscle, increasing type III and decreasing type I collagen, may be partially responsible for the observed changes. We directly investigated this hypothesis using quantitative real-time PCR on muscles and tendons that had been denervated for 5 wk. Five weeks of denervation resulted in a 2.91-fold increase in collagen concentration but no change in the content of collagen in the muscle, whereas in the tendon there was no change in either the concentration or content of collagen. The expression of collagen I, collagen III, and lysyl oxidase mRNA in the ECM of muscle decreased (76 +/- 1.6%, 73 +/- 2.3%, and 83 +/- 3.2%, respectively) after 5 wk of denervation. Staining with picrosirius red confirmed the earlier observation of a change in staining color from red to green. Taken with the observed equivalent decreases in collagen I and III mRNA, this suggests that there was a change in orientation of the ECM of muscle becoming more aligned with the axis of the muscle fibers and no change in collagen type. The change in collagen orientation may serve to protect the smaller muscle fibers from damage by increasing the stiffness of the ECM and may partly explain why the region of the tendon closest to the muscle becomes stiffer after inactivity.  相似文献   

13.
Histologic assessment of nerve regeneration in the rat   总被引:3,自引:0,他引:3  
This study reports the degree of spontaneous regeneration that will occur in the sciatic nerve of a rat 5 months after complete resection of the nerve. In 30 animals, the sciatic nerve was excised. Histological assessment at 5 months revealed evidence of regeneration for a variable distance (mean 23.7 mm +/- 6.4 mm). Histological sections were studied at 1-cm intervals along the length of the nerve. Evidence of compartmentation with "minifascicle" formation was noted. The orientation of the nerve fibers was parallel to the long axis of the nerve. This study assessing spontaneous regeneration is meant to serve as a control for other studies evaluating the effect of factors that may influence nerve regeneration in the rat model.  相似文献   

14.
Postconditioning, i.e., brief intermittent episodes of myocardial ischemia-reperfusion performed at the onset of reperfusion, reduces infarct size after prolonged ischemia. Our goal was to determine whether postconditioning is protective against myocardial stunning. Accordingly, conscious chronically instrumented dogs (sonomicrometry, coronary balloon occluder) were subjected to a control sequence (10 min coronary artery occlusion, CAO, followed by coronary artery reperfusion, CAR) and a week apart to postconditioning with four cycles of brief CAR and CAO performed at completion of the 10 min CAO. Three postconditioning protocols were investigated, i.e., 15 s CAR/15 s CAO (n=5), 30 s CAR/30 s CAO (n=7), and 1 min CAR/1 min CAO (n=6). Left ventricular wall thickening was abolished during CAO and similarly reduced during subsequent stunning in control and postconditioning sequences (e.g., at 1 h CAR, 33+/-4 vs. 34+/-4%, 30+/-4 vs. 30+/-4%, and 33+/-4 vs. 32+/-4% for 15 s postconditioning, 30 s postconditioning, and 1 min postconditioning vs. corresponding control, respectively). We confirmed this result in anesthetized rabbits by demonstrating that shortening of left ventricular segment length was similarly depressed after 10 min CAO in control and postconditioning sequences (4 cycles of 30 s CAR/30 s CAO). In additional rabbits, the same postconditioning protocol significantly reduced infarct size after 30 min CAO and 3 h CAR (39+/-7%, n=6 vs. 56+/-4%, n=7 of the area at risk in postconditioning vs. control, respectively). Thus, contrasting to its beneficial effects on myocardial infarction, postconditioning does not protect against myocardial stunning in dogs and rabbits. Conversely, additional episodes of ischemia-reperfusion with postconditioning do not worsen myocardial stunning.  相似文献   

15.
Collagen detection in histological sections and its quantitative estimation by computer-aided image analysis represent important procedures to assess tissue localization and distribution of connective fibers. Different histochemical approaches have been proposed to detect and quantify collagen deposition in paraffin slices with different degrees of satisfaction. The present study was performed to compare the qualitative and quantitative efficiency of three histochemical methods available for collagen staining in paraffin sections of colon. van Gieson, Sirius Red and Sirius Red/Fast Green stainings were carried out for collagen detection and quantitative estimation by morphometric image analysis in colonic specimens from normal rats or animals with 2,4-dinitrobenzenesulfonic acid (DNBS) induced colitis. Haematoxylin/eosin staining was carried out to assess tissue morphology and histopathological lesions. Among the three investigated methods, Sirius Red/Fast Green staining allowed to best highlight well-defined red-stained collagen fibers and to obtain the highest quantitative results by morphometric image analysis in both normal and inflamed colon. Collagen fibers, which stood out against the green-stained non-collagen components, could be clearly appreciated, even in their thinner networks, within all layers of normal or inflamed colonic wall. The present study provides evidence that, as compared with Sirius Red alone or van Gieson staining, the Sirius Red/Fast Green method is the most sensitive, in terms of both qualitative and quantitative evaluation of collagen fibers, in paraffin sections of both normal and inflamed colon.  相似文献   

16.
The mechanical properties of biological tissues are strongly correlated to the specific distribution of their collagen fibers. Monitoring the dynamic reorganization of the collagen network during mechanical stretching is however a technical challenge, because it requires mapping orientation of collagen fibers in a thick and deforming sample. In this work, a fast polarization‐resolved second harmonic generation microscope is implemented to map collagen orientation during mechanical assays. This system is based on line‐to‐line switching of polarization using an electro‐optical modulator and works in epi‐detection geometry. After proper calibration, it successfully highlights the collagen dynamic alignment along the traction direction in ex vivo murine skin dermis. This microstructure reorganization is quantified by the entropy of the collagen orientation distribution as a function of the stretch ratio. It exhibits a linear behavior, whose slope is measured with a good accuracy. This approach can be generalized to probe a variety of dynamic processes in thick tissues.   相似文献   

17.
Cutaneous aging and chronic exposure to UV irradiation leads to alterations in the appearance and biochemical composition of the skin. Members of the MMP family have been involved in the destruction of the extracellular matrix. Among them, gelatinases A and B were found to display elastolytic activity, in vitro. In this study, we first determined the ex vivo elastolytic potential of both endopeptidases, using human skin tissue sections and computerized morphometric analyses, and compared it with those of neutrophil elastase. In such conditions, gelatinase B (50 nM) induced 50% elastolysis. The percentage of elastic fibers degraded by gelatinase A (10-100 nM) never exceeded 10%. Elastolysis by gelatinase B and leukocyte elastase was characterized by a decrease in fiber length and an increase in the average diameter of the fibers. In addition, gelatinase B exhibited fibrillin-degrading activities. On the contrary, gelatinase A (50 nM) elicited up to 50% hydrolysis of collagen fibers, preferentially degrading type III collagen fibers. Gelatinase B did not promote any collagen degrading activity. Our data suggested that in vivo gelatinases could disrupt most extracellular matrix structures of human skin. Gelatinase B and to a much lesser extent, gelatinase A would degrade components of the elastic fibers network while gelatinase A, but not gelatinase B, would alter mostly collagen fibers and also degrade constituents of the dermo-epidermal junction.  相似文献   

18.
Constructs containing autogenous mesenchymal stem cells (MSCs) seeded in collagen gels have been used by our group to repair rabbit central patellar tendon defect injuries. Although these cell-gel composites exhibit improved repair biomechanics compared to natural healing, they can be difficult to handle at surgery and lack the necessary stiffness to resist peak in vivo forces early thereafter. MSCs are typically suspended in collagen gels around two posts in the base of a well in a specially designed silicone dish. The distance between posts is approximately the length of the tendon wound site. MSCs contract the gel around the posts prior to removal of the construct for implantation at surgery. We hypothesized that in vitro construct alignment and stiffness might be enhanced in the midregion of the longer construct where the end effects of the posts on the bulk material (St. Venant effects) could be minimized. Rabbit MSCs were seeded in purified bovine collagen gel at 0.04 M cells/mg collagen. The cell-gel mixture was pipetted into silicone dishes having two post-to-post lengths (short: 11 mm and long: 51 mm) but equivalent well widths and depths and post diameters. After 14 days of incubation, tensile stiffness and modulus of the constructs were measured using equivalent grip-to-grip lengths. Collagen fiber orientation index or OI (which measures angular dispersion of fibers) was quantified using small angle light scattering (SALS). Long constructs showed significantly lower angular dispersion vs. short constructs (OI of 41.24 degrees +/-1.57 degrees vs. 48.43 degrees +/-1.27 degrees , mean+/-SEM, p<0.001) with significantly higher linear modulus (0.064+/-0.009 MPa vs. 0.024+/-0.004 MPa, p=0.0022) and linear stiffness (0.031+/-0.005 MPa vs. 0.018+/-0.004 N/mm, mean+/-SEM, respectively, p=0.0404). We now plan to use principles of functional tissue engineering to determine if repairs containing central regions of longer MSC-collagen constructs improve defect repair biomechanics after implantation at surgery.  相似文献   

19.
The initial reaction kinetics of succinate dehydrogenase in situ were investigated in sections of mouse unfixed liver using an ARGUS-100 image analyser system. The sections were incubated on substrate-containing agarose gel films. Images of a section, illuminated with monochromatic light (584 nm), were captured with the image analyser in real time at intervals of 10 s during the incubation. The absorbances of selected hepatocytes in the successive images were determined as a function of time. In every cell, the absorbance increased nonlinearly after the first minute of incubation. The initial velocity of the dehydrogenase was calculated from the linear activities during the first 20 s of incubation. Hanes plots of the initial velocities and succinate concentration yielded the following mean kinetic constants. For periportal hepatocytes, the apparent Km = 1.2 +/- 0.8 mM and Vmax = 29 +/- 2 mumol hydrogen equivalents formed/cm3 hepatocyte cytoplasm per min. For pericentral hepatocytes, Km = 1.4 +/- 1.0 mM and Vmax = 21 +/- 2 mumol hydrogen equivalents/cm3 per min. The Km values are very similar to those determined previously from biochemical assays. These results, and the observed dependence of the initial velocity on the enzyme concentration, suggest that the technique reported here is valid for the histochemical assay of succinate dehydrogenase.  相似文献   

20.
In this work, we present a non‐invasive approach to determine azimuth and elevation angles of collagen fibers capable of generating second harmonic signal. The azimuth angle was determined using the minimum of second harmonic generation (SHG) signal while rotating the plane of polarization of excitation light. The elevation angle was estimated from the ratio of the minimal SHG intensity to the intensity when laser polarization and fiber directions were parallel to each other using experimentally determined calibration curve. Pixel‐resolution images of collagen fiber spatial orientation in tendon from bovine leg, chicken leg, and chicken skin were acquired using our approach of SHG polarization‐resolved microscopy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号