共查询到20条相似文献,搜索用时 15 毫秒
1.
A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus 总被引:2,自引:0,他引:2
We report the construction of a linkage map for the moss Ceratodon purpureus (n = 13), based on a cross between geographically distant populations, and provide the first experimental confirmation of maternal chloroplast inheritance in bryophytes. From a mapping population of 288 recombinant haploid gametophytes, genotyped at 121 polymorphic AFLP loci, three gene-based nuclear loci, one chloroplast marker, and sex, we resolved 15 linkage groups resulting in a map length of approximately 730 cM. We estimate that the map covers more than three-quarters of the C. purpureus genome. Approximately 35% of the loci were sex linked, not including those in recombining pseudoautosomal regions. Nearly 45% of the loci exhibited significant segregation distortion (alpha = 0.05). Several pairs of unlinked distorted loci showed significant deviations from multiplicative genotypic frequencies, suggesting that distortion arises from genetic interactions among loci. The distorted autosomal loci all exhibited an excess of the maternal allele, suggesting that these interactions may involve nuclear-cytoplasmic factors. The sex ratio of the progeny was significantly male biased, and the pattern of nonrandom associations among loci indicates that this results from interactions between the sex chromosomes. These results suggest that even in interpopulation crosses, multiple mechanisms act to influence segregation ratios. 相似文献
2.
Gravity sensing in plants and algae is hypothesized to rely upon either the mass of the entire cell or that of sedimenting organelles (statoliths). Protonemata of the moss Ceratodon purpureus show upward gravitropism and contain amyloplasts that sediment. If moss sensing were whole-cell based, then media denser than the cell should prevent gravitropism or reverse its direction. Cells that were inverted or reoriented to the horizontal displayed distinct negative gravitropism in solutions of iodixanol with densities of 1.052 to 1.320 as well as in bovine serum albumin solutions with densities of 1.037 to 1.184 g cm(-3). Studies using tagged molecules of different sizes and calculations of diffusion times suggest that both types of media penetrate through the apical cell wall. Estimates of the density of the apical cell range from 1.004 to 1.085. Because protonemata grow upward when the cells have a density that is lower than the surrounding medium, gravitropic sensing probably utilizes an intracellular mass in moss protonemata. These data provide additional support for the idea that sedimenting amyloplasts function as statoliths in gravitropism. 相似文献
3.
The kinetics of gravitropism and of amyloplast sedimentation were studied in dark-grown protonemata of the moss Ceratodon purpureus (Hedw.) Brid. The protonemata grew straight up at a rate of 20–25 m·h– in nutrient-supplemented agar. After they were oriented to the horizontal, upward curvature was first detected after 1–1.5 h and reached 84° by 24 h. The tip cells exhibited an amyloplast zonation, with a tip cluster of nonsedimenting amyloplasts, an amyloplast-free zone, and a zone with pronounced amyloplast sedimentation. This latter zone appears specialized more for lateral than for axial sedimentation since amyloplasts sediment to the lower wall in horizontal protonemata but do not fall to the basal wall in vertical protonemata. Amyloplast sedimentation started within 15 min of gravistimulation; this is within the 12–17-min presentation time. The data support the hypothesis that some amyloplasts function as statoliths in these cells.This work was supported by the National Aeronautics and Space Administration grant NAGW-780. We thank Professor E. Hartmann and J. Schwuchow for providing Ceratodon cultures, Dr. John Z. Kiss and Jeff Young for valuable discussions, and Professor Rainer Hertel (University of Freiburg, FRG) for bringing this material to our attention. 相似文献
4.
Adele Post 《Polar Biology》1990,10(4):241-245
Summary Variation in leaf pigmentation from green to ginger is observed for Ceratodon purpureus (Hedw.) Brid. in Antarctica. Electron microscopy of ginger and green leaves reveals less thylakoid stacking, a response to greater light exposure, in the ginger leaves. In extremely exposed sites C. purpureus has low chlorophyll a/b ratios which correlate with decreased 77K chlorophyll fluorescence, indicating damage to chlorophyll a. Pigment analysis of ginger moss shows that even when the chlorophyll a/b ratio has not decreased the pigment composition differs from green moss. The increase in anthocyanin and decrease in chlorophyll concentrations largely account for the visual change from green to ginger. The ratio of total carotenoid to chlorophyll varies from 0.35 in green moss to 0.55 in the ginger moss, with violaxanthin increased preferentially. Since these changes in pigmentation are consistent with photoprotection and they are linked to light dependent variations in chloroplast structure, it appears that photoprotective pigments are a useful adaptation for the bright Antarctic environment. 相似文献
5.
6.
RAPD profiling of genetic diversity in two populations of the moss Ceratodon purpureus in Victoria Land, Antarctica 总被引:2,自引:0,他引:2
Isolates of the moss Ceratodon purpureus were collected down a channel formed by a meltstream waterfall at Granite Harbour in Southern Victoria Land, Antarctica. The RAPD technique was used to analyse the extent of genetic variation within clumps, between clumps, and between this population and specimens of the same species from two other areas in Antarctica (one a few hundred metres away, the other at Edmonson Point, 300 km further north) and from Sydney, Australia. Genetic variation was detected within and among clumps, with some spatial structure to the population within the channel. Isolates from the nearby location were quite closely related, whereas those from Edmonson Point formed an outgroup on a phylogenetic tree of relatedness. Received: 10 June 1997 / Accepted: 30 September 1997 相似文献
7.
Microinjection of heme oxygenase genes rescues phytochrome-chromophore-deficient mutants of the moss Ceratodon purpureus 总被引:1,自引:0,他引:1
In protonemal tip cells of the moss Ceratodon purpureus (Hedw.) Brid., phototropism and chlorophyll accumulation are regulated by the photoreceptor phytochrome. The mutant ptr116 lacks both responses as a result of a defect in the biosynthesis of phytochromobilin, the chromophore of phytochrome, at
the point of biliverdin formation. The rescue of the phototropic response and of chlorophyll synthesis were tested by injecting
different substances into tip cells of ptr116. Microinjection was first optimised with the use of fluorescent dyes and an expression plasmid containing a green fluorescent
protein (GFP) gene. Injected phycocyanobilin, which substitutes for phytochromobilin, rescued both the phototropic response
and light-induced chlorophyll accumulation in ptr116. The same results were obtained when expression plasmids with heme oxygenase genes of rat (HO-1) and Arabidopsis thaliana (L.) Heynh. (HY1) were injected. Heme oxygenase catalyses the conversion of heme into biliverdin. Whereas HY1 has a plastid target sequence
and is presumably transferred to plastids, HO-1 is proposed to be cytosolic. The data show that ptr116 lacks heme oxygenase enzyme activity and indicate that heme oxygenases of various origin are active in Ceratodon bilin synthesis. In addition, it can be inferred from the data that the intracellular localisation of the expressed heme
oxygenase is not important since the plastid enzyme can be replaced by a cytosolic one.
Received: 8 March 1999 / Accepted: 30 July 1999 相似文献
8.
Apical cells of protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic in the dark and positively phototropic in red light. Various fluence rates of unilateral
red light were tested to determine whether both tropisms operate simultaneously. At irradiances ≥140 nmol m−2 s−1 no gravitropism could be detected and phototropism predominated, despite the presence of amyloplast sedimentation. Gravitropism
occurred at irradiances lower than 140 nmol m−2 s−1 with most cells oriented above the horizontal but not upright. At these low fluence rates, phototropism was indistinct at
1 g but apparent in microgravity, indicating that gravitropism and phototropism compete at 1 g. The frequency of protonemata that were negatively phototropic varied with the fluence rate and the duration of illumination,
as well as with the position of the apical cell before illumination. These data show that the fluence rate of red light regulates
whether gravitropism is allowed or completely repressed, and that it influences the polarity of phototropism and the extent
to which apical cells are aligned in the light path.
Received: 19 January 1999 / Accepted: 19 March 1999 相似文献
9.
Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented
90°, they temporarily grow down soon after reorientation (“initial reversal”) and also prior to cytokinesis (“mitotic reversal”).
A positively gravitropic mutant designated wrong-way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-1 reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata
of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal,
and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination
of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.
Received: 4 November 1996 / Accepted: 26 November 1996 相似文献
10.
Amyloplasts that sediment in protonemata of the moss Ceratodon purpureus are nonrandomly distributed in microgravity
下载免费PDF全文

Little is known about whether or how plant cells regulate the position of heavy organelles that sediment toward gravity. Dark-grown protonemata of the moss Ceratodon purpureus displays a complex plastid zonation in that only some amyloplasts sediment along the length of the tip cell. If gravity is the major force determining the position of amyloplasts that sediment, then these plastids should be randomly distributed in space. Instead, amyloplasts were clustered in the subapical region in microgravity. Cells rotated on a clinostat on earth had a roughly similar non-random plastid distribution. Subapical clusters were also found in ground controls that were inverted and kept stationary, but the distribution profile differed considerably due to amyloplast sedimentation. These findings indicate the existence of as yet unknown endogenous forces and mechanisms that influence amyloplast position and that are normally masked in stationary cells grown on earth. It is hypothesized that a microtubule-based mechanism normally compensates for g-induced drag while still allowing for regulated amyloplast sedimentation. 相似文献
11.
Aphototropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome 总被引:2,自引:1,他引:2
Following UV mutagenesis of protonemal tissue of the moss Ceratodon purpureus we have isolated different aphototropic mutant lines that can be divided into two distinct classes. One class, represented by the line ptr1, shows characteristic features of phytochrome chromophore deficiency. ptrl shows negligible photoreversibility (<5% of wild type), whereas immunoblots show normal apoprotein levels. The aphototropic phenotype could be partially restored with biliverdin, a precursor of the phytochrome chromophore. It was found that, whereas in wild type formation of Pfr leads to suppression of gravitropism, there is no such suppression ptrl. In addition, ptr1 shows lower chlorophyll levels than the wild type. These findings indicate that, as expected for a chromophore-deficient mutant, multiple phytochrome effects are lost. The other class of mutants, represented by the line ptr103, shows more specific effects. In this mutant, only phototropism is affected. Suppression of gravitropism, the content of chlorophyll and photoreversibility of phytochrome were similar to those of the wild type. 相似文献
12.
The random amplified polymorphic DNA (RAPD) technique, and DNA sequencing of the conserved nuclear ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2), have been used to assess levels of genetic diversity in the moss Ceratodon purpureus from several locations in Australasia, subantarctic Heard and Macquarie Islands, and continental Antarctica. Populations from Heard and Macquarie Islands and from Antarctica maintain high levels of genetic variation. Both within- and among-colony variation were observed at these locations. DNA sequence analysis showed that samples from the Ross Sea region of Antarctica were most closely related to colonies from Casey and Macquarie Island, and that one colony from Heard Island was most closely related to one from Europe. DNA sequence data separated two Australian populations from the Antarctic and subantarctic group on a dendrogram. Detailed RAPD analysis of a single colony from continental Antarctica demonstrated that mutation probably causes the high variability observed in this moss. DNA sequencing and RAPD analysis are complementary techniques for genetic investigation of Antarctic moss populations.Jenny Ninham was an integral part of this research team for several years. Unfortunately she did not live to see these results published. 相似文献
13.
* Studies of ultraviolet (UV) light-induced DNA damage in three Antarctic moss species have shown Ceratodon purpureus to be the most UV tolerant, despite containing lower concentrations of methanol-soluble UV-screening compounds than the co-occurring Bryum pseudotriquetrum. * In this study, alkali extraction of cell wall-bound phenolics, combined with methanol extraction of soluble phenolics, was used to determine whether cell wall-bound UV screens explain the greater UV tolerance of C. purpureus. * The combined pool of UV screens was similar in B. pseudotriquetrum and C. purpureus, but whilst B. pseudotriquetrum had almost equal concentrations of MeOH-soluble and alkali-extractable cell wall-bound UV-screening compounds, in C. purpureus the concentration of cell wall-bound screening compounds was six times higher than the concentration of MeOH-soluble UV screens. The Antarctic endemic Schistidium antarctici possessed half the combined pool of UV screens of the other species but, as in C. purpureus, these were predominantly cell wall bound. Confocal microscopy confirmed the localization of UV screens in each species. * Greater investment in cell wall-bound UV screens offers C. purpureus a more spatially uniform, and potentially more effective, UV screen. Schistidium antarctici has the lowest UV-screening potential, indicating that this species may be disadvantaged under continuing springtime ozone depletion. Cell wall compounds have not previously been quantified in bryophytes but may be an important component of the UV defences of lower plants. 相似文献
14.
Wild-type (WT) protonemata of the moss Ceratodon purpureus grow upwards in darkness (negative gravitropism), whereas protonemata of the mutant, wrong-way response (wwr-1) grow down. Since Ceratodon protoplasts regenerate to form new protonemata, we analyzed whether the direction of filament emergence was influenced by gravity (gravimorphism) and determined the cytological events that correlated with the onset of gravitropism in WT and wwr-1 filaments formed de novo. In the WT the direction of filament emergence appeared to be gravimorphic as more than 66% of the new filaments emerged above the horizontal. In contrast, the direction of filament emergence was random in wwr-1. Tip-growing cells of both genotypes became gravitropic within a total of one to two cell divisions. Gravitropic curvature in wwr-1 was opposite in direction to that of WT, and the timing of curvature was comparable, indicating that the wwr-1 mutation acts during the onset of gravitropic competence. In time-lapse studies of both genotypes, neither a plastid-free zone nor obvious and extensive plastid sedimentation characteristic of mature dark-grown protonemata was observed in the new filaments prior to gravitropic curvature. Thus, it appears that these latter two features are not required for gravitropism in new protonemal filaments from protoplasts. Received: 24 October 1997 / Accepted: 18 November 1997 相似文献
15.
Many observations suggest that morphological evolution occurs slowly in bryophytes, and this has been suggested to reflect low genetic diversity within species. Isozyme studies, however, stand in apparent contrast and have shown that bryophytes can contain high levels of genetic variability within and among populations. In light of this conflict, we tested the potential of the moss, Ceratodon purpureus, to undergo adaptive change (i.e., ecotypic differentiation) in response to soils that have been contaminated with high levels of metals for 90 years by measuring gametophytic growth and reproductive expression under experimental conditions. Variation in protonemal growth in sterile culture indicates that plants from one population growing on contaminated soil near a smelter are significantly more tolerant of zinc, cadmium, and lead than plants from uncontaminated sites. Results from a common garden experiment, in which plants were grown on soil from the smelter site, indicate that plants from near the smelter are significantly more tolerant of contaminated soils than plants from uncontaminated sites for vegetative growth. The same experiment suggests that plants from the smelter site are also more tolerant in terms of gametangial production (although we could not test this statistically). Our results demonstrate that C. purpureus has been able to undergo relatively rapid evolution in response to strong selective pressures. 相似文献
16.
The mobility of phytochrome within protonemal tip cells of the moss Ceratodon purpureus, monitored by fluorescence correlation spectroscopy
下载免费PDF全文

Fluorescence correlation spectroscopy (FCS) is a versatile tool for investigating the mobilities of fluorescent molecules in cells. In this article, we show that it is possible to distinguish between freely diffusing and membrane-bound forms of biomolecules involved in signal transduction in living cells. Fluorescence correlation spectroscopy was used to measure the mobility of phytochrome, which plays a role in phototropism and polarotropism in protonemal tip cells of the moss Ceratodon purpureus. The phytochrome was loaded with phycoerythrobilin, which is fluorescent only in the phytochrome-bound state. Confocal laser scanning microscopy was used for imaging and selecting the xy measuring position in the apical zone of the tip cell. Fluorescence correlation was measured at ancient z-positions in the cell. Analysis of the diffusion coefficients by nonlinear least-square fits showed a subcellular fraction of phytochrome at the cell periphery with a sixfold higher diffusion coefficient than in the core fraction. This phytochrome is apparently bound to the membrane and probably controls the phototropic and polarotropic response. 相似文献
17.
Crosses between populations of Tigriopus californicus result in backcross and F2 hybrid breakdown for a variety of fitness related measures. The magnitude of this hybrid breakdown is correlated with evolutionary divergence. We assessed the chromosomal basis of viability differences in nonrecombinant backcross hybrids using markers mapped to individual chromosomes. To assess effects of evolutionary divergence we crossed one population to three different populations: two distantly related (approximately 18% mitochondrial COI sequence divergence) and one closely related (approximately 1% mitochondrial COI sequence divergence). We found that all three interpopulation crosses resulted in significant deviations from expected Mendelian ratios at a majority of the loci studied. In all but one case, deviations were due to a deficit of parental homozygotes. This pattern implies that populations of T. californicus carry a significant genetic load, and that a combination of beneficial dominance and deleterious homozygote-heterozygote interactions significantly affects hybrid viability. Pairwise tests of linkage disequilibrium detected relatively few significant interactions. For the two divergent crosses, effects of individual chromosomes were highly concordant. These two crosses also showed higher heterozygote excess in females than males across the vast majority of chromosomes. 相似文献
18.
Fritz Thümmler Monika Dufner Peter Kreisl Peter Dittrich 《Plant molecular biology》1992,20(6):1003-1017
The phytochrome gene (phyCer) of the moss Ceratodon purpureus was isolated and characterized. phyCer is composed of three coding exons: exon I of 2035 bp, exon II of 300 bp and exon III of 1574 bp. The deduced polypeptide encoded by exon I and II exhibits substantial sequence homology to the conserved NH2-terminal chromophore domain of known phytochromes. In contrast, the COOH-terminal polypeptide encoded by exon III shows no sequence homology to any phytochrome molecule. phyCer most likely represents a single-copy gene and is expressed in a light-independent manner. From the DNA sequence analysis it can be deduced that the PhyCer polypeptide is composed of 1303 amino acids (including the starting Met) which predicts a molecular mass for PhyCer of 145 kDa. The polypeptide encoded in exon III exhibits striking homology within the 300 carboxy-terminal amino acids to the catalytic domain of protein kinases. The carboxy terminus of PhyCer was found to be most homologous to protein-tyrosine kinases of Dictyostelium discoideum and to the products of retroviral oncogenes which belong to the Raf-Mos serine/threonine kinase family. From the hydropathy profile PhyCer appears to be a soluble protein. The predicted structure suggests that PhyCer represents a soluble light-sensor protein kinase which is linked with a cellular phosphorylating cascade. 相似文献
19.
A ribosomal preparation from N6 -isopentenyladenine-treated protonema of Ceratodon purpureus (Hedw.) Brid. exhibited an increased activity of protein synthesis in a cell-free system as compared to a control preparation. The ratio of polyribosomes to monoribosomes was the same in both preparations, and it is assumed that an activation of pre-existing polyribosomes was responsible for the increased efficiency in protein synthesis. An electrophoretic fractionation of the in vitro translation product showed an enhanced synthesis of some polypeptide fractions in the cytokinin variant. 相似文献
20.
The polymerase chain reaction was carried out with primers hybridizing to conserved regions of the phytochrome genes. With DNA from the moss Ceratodon purpureus 5 overlapping fragments were obtained resulting in a continuous nucleotide sequence of 1474 bp. The deduced amino acid sequence showed homology of around 60% with all known phytochrome sequences. The sequences contained a conserved chromophore attachment site. In light-grown Ceratodon protonemata the phytochrome mRNA with the size of about 4.5 kb was detected. 相似文献