共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of three highly conserved insulin residues PheB24, PheB25, and TyrB26 was studied to better understand the subtleties of the structure-function relationship between insulin and its receptor. Ten shortened insulin analogues with modifications in the beta-strand of the B-chain were synthesized by trypsin-catalyzed coupling of des-octapeptide (B23-B30)-insulin with synthetic peptides. Insulin analogues with a single amino acid substitution in the position B26 and/or single N-methylation of the peptide bond at various positions were all shortened in the C-terminus of the B-chain by four amino acids. The effect of modifications was followed by two types of in vitro assays, i.e., by the binding to the receptor of rat adipose plasma membranes and by the stimulation of the glucose transport into the isolated rat adipocytes. From our results, we can deduce several conclusions: (i) the replacement of tyrosine in the position B26 by phenylalanine has no significant effect on the binding affinity and the stimulation of the glucose transport of shortened analogues, whereas the replacement of TyrB26 by histidine affects the potency highly positively; [HisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide and [NMeHisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide show binding affinity 529 and 5250%, respectively, of that of human insulin; (ii) N-methylation of the B24-B25 peptide bond exhibits a disruptive effect on the potency of analogues in both in vitro studies regardless the presence of amino acid in the position B26; (iii) N-methylation of the B23-B24 peptide bond markedly reduces the binding affinity and the glucose transport of respective analogue [NMePheB24]-des-tetrapeptide (B27-B30)-insulin-B26-amide. 相似文献
2.
We have synthesized [21-asparagine diethylamide-A]insulin, which differs from the parent molecule in that the free carboxyl group of the C-terminal amino acid residue, asparagine, of the A chain moiety has been converted to a diethylamide group. The analogue displays equivalent potency in receptor binding and biological activity, 48% and 56%, respectively, relative to bovine insulin. In contrast, we have reported previously [Burke, G. T., Chanley, J. D., Okada, Y., Cosmatos, A., Ferderigos, N., & Katsoyannis, P. G. (1980) Biochemistry 19, 4547-4556] that [21-asparaginamide-A]insulin exhibits a divergence in these properties, ca. 60% in receptor binding and ca. 13% in biological activity. The disparity in the biological behavior of these analogues is discussed, and we ascribe the modulation of biological activity independent of receptor binding activity observed between these analogues to the difference in the negativity of the carbonyl oxygen of the A chain moiety C-terminal amino acid residue. 相似文献
3.
We have synthesized [21-desasparagine,20-cysteine ethylamide-A]insulin and [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin, which differ from natural insulin in that the C-terminal amino residue of the A chain, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an ethylamide and a trifluoroethylamide group, respectively. [21-Desasparagine,20-cysteine ethylamide-A]insulin displayed equivalent potency in receptor binding and biological activity, ca. 12% and ca. 14%, respectively, relative to bovine insulin. In contrast, [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin displayed a divergence in these properties, ca. 13% in receptor binding and ca. 6% in biological activity. This disparity is ascribed to a difference in the electronic state of the A20-A21 amide bond in these two analogues. A model is proposed to account for the observation of divergence between receptor binding and biological activity in a number of synthetic insulin analogues and naturally occurring insulins. In this model, changes in the electronic state and/or the orientation of the A20-A21 amide bond can modulate biological activity independently of receptor binding affinity. The A20-A21 amide bond is thus considered as an important element in the "message region" of insulin. 相似文献
4.
The C-terminal region of the A chain of insulin has been shown to play a significant role in the expression of the biological activity of the hormone. To further delineate the contribution of this segment, we have synthesized [21-desasparagine,20-cysteinamide-A]insulin and [21-desasparagine,20-cysteine isopropylamide-A]insulin, in which the C-terminal amino acid residue of the A chain of insulin, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an amide and an isopropylamide, respectively. Both insulin analogues display biological activity, 14-15% for the unsubstituted amide analogue and 20-22% for the isopropylamide analogue, both relative to bovine insulin. In contrast, a [21-desasparagine-A]insulin analogue has been reported to display less than 4% of the activity of the natural hormone [Carpenter, F. (1966) Am. J. Med. 40, 750-758]. The implications of these findings are discussed, and we conclude that the A20-A21 amide bond plays a significant role in the expression of the biological activity of insulin. 相似文献
5.
Cocaine inhibits the dopamine transporter and the consequent elevation of dopamine is thought to contribute to the addictive properties of cocaine. Tropane analogues of cocaine, targeted to the dopamine transporter (DAT), are a significant focus of drug design for cocaine addiction medications. Herein, we report the function of the ortho hydroxy substituents in dopamine with respect to the azabicyclo[3.2.1]octane skeleton. The introduction of the o-dihydroxyl functionality led to reduced binding potency at monoamine transporters, rather than enhanced interaction with the DAT. It is therefore likely that the binding site for these compounds on the DAT is not the same as that for dopamine. Notwithstanding the moderate potency of the free catechols (>100 nM), 7 manifested stimulant activity with a duration of effect that exceeded 4 h in a rat locomotor activity assay. Compound 10, a diacetoxy prodrug for 7, substituted fully for cocaine in a rat drug-discrimination paradigm and is now undergoing further investigation as a potential medication for cocaine abuse. 相似文献
6.
Effect of iodination on the biological activity of insulin 总被引:1,自引:0,他引:1
7.
An analog of human insulin, which differs from the parent molecule in that the histidine residue at position 10 of the B chain (B10) is replaced by lysine, has been synthesized and isolated in purified form. This analog, [10-lysine-B] insulin ([Lys10-B] insulin), in stimulating lipogenesis and in radioimmunoassays, exhibited potencies of 14.2% and 14.7%, respectively, as compared to the natural hormone. In insulin receptor binding in rat liver membranes, [Lys10-B] insulin was found to possess a potency of ~17% compared to insulin. We have shown previously that substitution of the B10 polar residue histidine with the nonpolar leucine results in an analog exhibiting inin vivo assays ~50% of the activity of the parent molecule. It is speculated that in insulin the relative size of the amino acid residue at B10, rather than its polarity, is the most important factor in maintaining a structure commensurate with high biological activity. 相似文献
8.
Kim DJ Seo KJ Lee KS Shin KJ Yoo KH Kim DC Park SW 《Bioorganic & medicinal chemistry letters》2000,10(24):2799-2802
A new series of 1beta-methylcarbapenems 1a-i bearing isoxazoloethenyl groups on the pyrrolidine ring has been prepared and evaluated for in vitro antibacterial activity and stability to DHP-I. Most compounds showed excellent antibacterial activity and high stability to DHP-I superior to that of meropenem. Of these new carbapenems, 1a,b,h exhibited the best combination of antibacterial activity and DHP-I stability. 相似文献
9.
Receptor binding and biological activity of [SerB24]-insulin, an abnormal mutant insulin 总被引:1,自引:0,他引:1
M Kobayashi M Haneda H Maegawa N Watanabe Y Takada Y Shigeta K Inouye 《Biochemical and biophysical research communications》1984,119(1):49-57
[SerB24]-insulin, the second structurally abnormal mutant insulin, and [SerB25]-insulin were semisynthesized and were studied for receptor binding and biological activity. Receptor binding and biological activity determined by its ability to increase 2-deoxy-glucose uptake in rat adipocytes were 0.7-3% of native insulin for [SerB24]-insulin and 3-8% for [SerB25]-insulin. Negative cooperative effect of these analogues was also markedly decreased. Immunoreactivity of [SerB24]-insulin was decreased whereas that of [SerB25]-insulin was normal. Markedly decreased receptor binding of [SerB24]-insulin appeared to be due to substitution of hydrophobic amino acid, Phe, with a polar amino acid, Ser, at B24. 相似文献
10.
R Knorr W Danho E E Büllesbach H G Gattner H Zahn G L King C R Kahn 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1983,364(11):1615-1626
The chemical synthesis of two porcine insulin analogues is described. Leucine in position B17 of the native molecule was substituted by its D-enantiomer and by L-norleucine, respectively. Both B-chain derivatives were synthesized by fragment condensation and purified as di-S-sulphonates by gel filtration followed by ion exchange chromatography on SP-Sephadex at pH3. Combination with native sulphhydryl A-chain yielded [DLeuB17]insulin and [NleB17]insulin. Both insulin analogues were isolated by gel filtration followed by ion exchange chromatography on CM-cellulose at pH 4.0. Biological activities of the analogues were determined relative to native pork insulin: 1) glucose oxidation in rat epididymal adipocytes was 6% for [DLeuB17]insulin and 16% for [NleB17]insulin, 2) receptor-binding affinity tested with cultured human fibroblasts and with rat adipocytes was 3% for [DLeuB17]insulin and 26% for [NleB17]insulin, and 3) thymidine incorporation into DNA of human fibroblasts was 35% for [DLeuB17]insulin and 100% for [NleB17]insulin. 相似文献
11.
12.
《Biochimica et Biophysica Acta.Protein Structure》1979,576(2):372-384
Specific modification of the single lysine residue (Lys-12) in glucagon with O-methylisourea has been effected by blocking the reactivity of the amino terminal histidine with copper, providing a method for obtaining [12-homoarginine]glucagon. It was found that as a side reaction, under the conditions of the modification reaction, Cu(II) catalyzed cleavage of the polypeptide chain between Asp-9 and Tyr-10, and between Lys-12 and Tyr-13. This observation may be of value for development of a sequence-specific peptide cleavage procedure. The dilute solution conformations of glucagon and [12-homoarginine]-glucagon were compared by circular dichroism, fluorescence, phosphorescence, energy transfer, and optical detection of magnetic resonance. The results indicate that conversion of Lys-12 to homoarginine does not alter the helix content, the side chain conformation in the vicinity of the tyrosine and tryptophan residues, or the relative distances and orientations between these residues. However, the modification reduces the hormone potency towards activation of lipolysis in isolated rat epididymal fat cells by a factor of seven. We attribute the loss of potency to an interference with a specific interaction between the lysine residue and the fat cell hormone receptor, and not to a change in the solution conformation of the hormone. 相似文献
13.
V Dive A Yiotakis C Roumestand B Gilquin J Labadie F Toma 《International journal of peptide and protein research》1992,39(6):506-515
Peptide inhibitors of E. collagenolyticum bacterial collagenase, HS-CH2-CH2-CO-Pro-Yaa (Yaa = Ala, Leu, Nle), have been N-methylated at the Yaa position. The N-methylation slightly increases the inhibitory potency of the modified peptides as compared to the parent compounds. The conformational effects of the N-methylation have been investigated by both 1H 2D-NMR and molecular mechanics energy minimization. Three low-energy conformers have been predicted for the unmethylated parent compounds (Yaa = Ala, Leu, Nle). They are characterized by the psi value of the central proline residue: psi Pro = 150 degrees (trans' conformation), psi Pro = 70 degrees (C7 conformation) and psi Pro = -50 degrees (cis' conformation). The N-methylation has been found to strongly increase the energy of the C7 conformer and to a less extent the energy of the cis' conformer. This leaves the trans' conformation as the only low-energy conformer. The ROESY experiments have established that both the N-methyl peptides and the parent compounds adopt the same preferred backbone conformation in water solution, i.e. the trans' conformation. Based on these results, the activities of the N-methyl peptides are discussed and a possible conformation of the inhibitor in the bound state is proposed. 相似文献
14.
Interaction between the A2 and A19 amino acid residues is of critical importance for high biological activity in insulin: [19-leucine-A]insulin 总被引:1,自引:0,他引:1
The replacement of tyrosine at position A19 by leucine in the insulin molecule led to an analogue, [19-leucine-A]insulin [( Leu19-A]insulin), displaying insignificant receptor binding affinity and in vitro biological activity less than 0.1 and 0.05%, respectively, compared to the natural hormone. This analogue along with the previously reported [2-glycine-A]-, [2-alanine-A]-, and [2-norleucine-A]insulins is the least potent insulin analogue we have examined. Circular dichroic studies showed that all these analogues are monomeric at concentrations at which insulin is primarily dimeric. We conclude that an aromatic ring at position A19 and the presence of the side chain of isoleucine at position A2 are each of critical importance for high biological activity in insulin. It appears that the van der Waals interaction between the side chain of isoleucine A2 and tyrosine A19, present in crystalline insulin, is among the most important determinants for high biological activity in insulin. 相似文献
15.
Insulin may be a potential target of ONOO- during conditions involving accelerated rates of oxygen radical and nitric oxide generation in pancreatic islet beta-cells. To evaluate the effect of protein tyrosine nitration on insulin function, the porcine insulin was nitrated by ONOO-. Insulin nitration was confirmed by spectral changes, Native-PAGE, and mass spectrometry. The bioassay results show that mono-nitro-insulin affected its receptor binding and hypoglycemic capacities to a certain extent, but still hold high biological activities. 相似文献
16.
A Catania P Grieco A Randazzo E Novellino S Gatti C Rossi G Colombo J M Lipton 《The journal of peptide research》2005,66(1):19-26
Previous research has shown that the immunomodulatory peptide alpha-melanocyte-stimulating hormone (alpha-MSH) and its carboxy-terminal tripeptide KPV (Lys-Pro-Val alpha-MSH11-13) have antimicrobial influences. By inserting a Cys-Cys linker between two units of KPV, we designed the dimer [Ac-CKPV]2 that showed excellent candidacidal effects in pilot tests and was the subject of further investigations. [Ac-CKPV]2 was active against azole-resistant Candida spp. Therefore, the molecule appeared a promising candidate for therapy of fungal infections and was the subject of a structural study. 1H-NMR and restrained mechanic and dynamic calculations suggest that the peptide adopts an extended backbone structure with a beta-turn-like structure. These results open a pathway to development of additional novel compounds that have candidacidal effects potentially useful against clinical infections. 相似文献
17.
Nicolaos Ferderigos G. Thompson Burke Kouki Kitagawa Panayotis G. Katsoyannis 《The protein journal》1983,2(2):147-170
Two analogs of sheep insulin, both differing from the native material by a single amino acid in the A chain, have been synthesized and isolated in highly purified form by procedures developed in this laboratory. In one case, the glutamine residue in position A5 was replaced by leucine ([Leu5-A]); in the other, the tyrosine residue in position A19 was replaced by phenylalanine ([Phe19-A]). The biological behavior of these analogs was compared with natural bovine insulin inin vitro tests and in receptor-binding assays, as well as in radioimmunoassay. In the stimulation of glucose oxidation by rat adipocytes, the analogs gave relative potencies of 30% and 7.8% for [Leu5-A] and [Phe19-A], respectively. Receptor-binding assays in rat liver plasma membranes showed similar behavior for both analogs. In radioimmunoassay, [Leu5-A] displayed a relative potency of 27.9%, while [Phe19-A] showed a relative potency of 19–27%, compared with bovine insulin. At high concentration, both analogs displayed the same maximal activity as bovine insulin, and the dose-response curves are essentially parallel. It is speculated that the interaction between the glutamine residue in position 5 and the tyrosine residue in position 19 of the A chain of insulin are important in maintaining a three-dimensional structure commensurate with high biological activity. The full intrinsic activity of both analogs at high concentrations and the similarity of the potency figures in receptor-binding and glucose-oxidation assays permit the further conclusion that the reduced potency in the latter assay can be ascribed wholly to the reduced binding affinity toward insulin receptors caused by the substitutions made in the analogs. The receptor-analog complexes are fully capable of triggering the next event in the chain leading to the biological response. 相似文献
18.
Amy J. Pfizenmayer Matthew D. Vera Xiaobin Ding Dong Xiao Wei-Chuan Chen Madeleine M. Joullié Deepika Tandon Peter L. Toogood 《Bioorganic & medicinal chemistry letters》1998,8(24):752-3656
A didemnin B analog containing a Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) as a conformationally restrained replacement for tyrosine has been synthesized and shown to have comparable potency as a protein biosynthesis inhibitor. Synthetic highlights include an oxidation of an alcohol to an acid in the presence of the sensitive Tic heterocycle and a modified Schmidt-type one-pot macrocyclization. 相似文献
19.
U Galasik-Bartoszek D Konopińska A Plech V A Najjar R Brus 《International journal of peptide and protein research》1991,38(2):176-180
[Hyp3]-tuftsin (Thr-Lys-Hyp-Arg) has been synthesized by the liquid-phase method. In biological investigations performed on rats antinociceptive and diuretic effects have been determined. It has been suggested that the presence of hydroxyl substituent in pyrrolidine ring of proline slightly modifies antinociceptive TU effect and is responsible for the increased diuretic [Hyp3]-TU activity. 相似文献
20.
A 3,4-dehydroproline analogue of tuftsin (L-Thr-L-Lys-L-Pro-L-Arg) was prepared by the solid phase synthetic method. Following reversed-phase high performance liquid chromatography (HPLC) purification, the analogue was compared to tuftsin for its ability to enhance the chemotactic, bactericidal and phagocytic activities of polymorphonuclear leukocytes (PMN). Both tuftsin and [Δ3-pro3]-tuftsin elicited a similar significant chemotactic effect at a concentration of 10 μg/ml. A slight suppression of the chemotactic activity was observed with tuftsin at 10?3 μg/ml and with [Δ3-pro3]-tuftsin at concentrations of 10?3, 10?2 (significant) and 10?1 μg/ml. Although similar bactericidal activities were observed for both peptides, PMN exposed to [Δ3-pro3]-tuftsin exhibited increased phagocytic indicies 2–4 times that of tuftsin-treated PMN at concentrations of 0.4, 0.6 and 1.0 μg/ml. 相似文献