首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of human erythrocyte ghosts with an equal volume of 0.2 mM EDTA in isotonic KCl decreased both the activity and Ca2+ sensitivity of the (Ca2+ + Mg2+)-ATPase remaining associated with the membrane. Readdition of the EDTA-extract activated the (Ca2+ + Mg2+)-ATPase activity. The activator activity was trypsin sensitive, heat stable and retained by a phenothiazine affinity column, consistent with properties expected of calmodulin. However, unlike calmodulin, the activity was not retained by DEAE Sephadex A-50 and it eluted from Sephacryl S-200 as heterogeneous peaks of activator activity of apparent molecular weight between 107,000 and 178,000. Nevertheless, the activator in the EDTA extract both before and after gel filtration contained calmodulin, as determined by radioimmunoassay and by its activation of calmodulin - deficient phosphodiesterase. SDS-gel electrophoresis of the activator isolated by gel filtration showed a protein of Mr 56,000 in addition to a low molecular weight protein corresponding to calmodulin. It is suggested that the red cell membrane contains a calmodulin binding protein which tightly binds calmodulin as a polymeric complex in a Ca2+-independent manner.  相似文献   

2.
Treatment of erythrocyte ghosts with micromolar concentrations of Cd2+ results in a noncompetitive inhibition of the calmodulin-dependent (Ca2+ + Mg2+)-ATPase activity. Higher concentrations of Cd2+ are required for inhibition of the (Ca2+ + Mg2+)-ATPase activity of calmodulin-depleted ghosts. The interaction of Cd2+ is time-dependent with an apparent rate constant around 0.12/min. The inhibition is relieved by addition of EGTA with a rate constant around 0.15/min. If Cd2+ is allowed to interact with calmodulin prior to the association of the protein with the ghosts, the inhibition is mainly competitive. The results suggest that the inhibitory effect caused by Cd2+ is due to an interaction with calmodulin. The slow interaction of Cd2+ suggests that calmodulin bound to the (Ca2+ + Mg2+)-ATPase is inaccessible to Cd2+.  相似文献   

3.
Human erythrocyte membranes obtained by freeze-thawing of ghosts prepared in the absence or presence of EDTA, by washing with a 12 mosm medium at pH 7.7 or a 2 mosm medium at pH 6.5 contain both high and low Ca affinity (Mg + Ca)-ATPase activities. Incubation of ghosts in a less than 2 mosm medium at pH 7.5 or in 0.1 mm EDTA + 1 Him Tris-maleate (pH 8.0) results in removal of the high affinity (Mg + Ca)-ATPase activity from the membrane in a time dependent manner. Under similar conditions up to 25% of membrane proteins are removed. The soluble protein fraction extracted, although devoid of ATPase activity, reconstitutes with the remaining membrane residue with restoration of original (Mg + Ca)-ATPase activity. Addition of the soluble protein fraction to heat-treated membranes devoid of low affinity (Mg + Ca)-ATPase activity allows reconstitution of more than 33% of the original high affinity (Mg + Ca)-ATPase activity which has a Ca dissociation constant of approximately 1.6μm. Temperature and phospholipase A2 studies indicate that low affinity (Mg + Ca)-ATPase activity is phospholipid dependent in contrast to high affinity (Mg + Ca)-ATPase activity. Ruthenium red and LaCl3 inhibit both high and low affinity (Mg + Ca)-ATPase activities with similar potencies. The ease of removal of high affinity (Mg + Ca)-ATPase activity from the membrane by relatively mild conditions suggests that an activator protein or the high affinity (Mg + Ca)-ATPase itself is only loosely attached to the membrane. These studies show that low affinity (Mg + Ca)-ATPase activity is not an artifact and is distinct from high affinity (Mg + Ca)-ATPase activity. The low affinity (Mg + Ca)-ATPase activity is sensitive to Ca2+ in the concentration range from below 0.3 μm to 300 μm compatible with an association of this enzyme with Ca transport.  相似文献   

4.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

5.
The ATP production of human erythrocytes in the steady state (approximately 2 mmoles . 1 cells-1 . h-1, 37 degrees C, pHi 7.2) is maintained by glycolysis and the ATP consumption is essentially limited to the cell membrane. About 25% of the ATP consumption is used for ion transport ATPases. The bulk of the ATP consuming processes in intact erythrocytes remains poorly understood. "Isotonic" erythrocyte membranes prepared under approximate intracellular conditions after freeze-thaw hemolysis have high (Ca2+, Mg2+)-ATPase activities (80% of the total membrane ATPase activity). There is a great discrepancy between the high capacity of the (Ca2+, Mg2+)-ATPase in isotonic membranes and the actual activity in the intact cell. The (Ca2+, Mg2+)-ATPase of isotonic membranes has a "high" Ca2+-affinity (Ka less than 0.5 microM) and a "low" Mg-ATP affinity (Km approximately 760 microM). This state of (Ca2+, Mg2+)-ATPase is caused by the association of calmodulin and 30000 Dalton polypeptides (ATP affinity modulator protein). Hypotonic washings of isotonic membranes result in a loss of the 30 kD polypeptides. EGTA (0.5 mM) extracts derived from isotonic membranes contain the 30 kD modulator protein and restore the properties of the (Ca2+, Mg2+)-ATPase of hypotonic membrane preparations to the isotonic characteristics. The Mg-ATP affinity modulator protein is assumed to form a complex with calmodulin and (Ca2+, Mg2+)-ATPase.  相似文献   

6.
The effects of 3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-6-butyric acid (DBA), an antisickling agent, on the rates of Ca2+-dependent ATP hydrolysis by the human red cell (Ca2+ + Mg2+)-ATPase, have been studied in membranes (normal and sickle-cell) stripped of endogenous calmodulin. The activity of the enzyme is increased by DBA in a manner which is dependent on both the concentrations of DBA and Ca2+. At 37 degrees C, the normal red cell (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 133% in the presence of 1 mM DBA and 0.2 mM CaCl2, while the sickle-cell enzyme is stimulated maximally by 81% in the presence of 0.5 mM DBA and 0.2 mM CaCl2. The stimulation of the enzyme in both systems is antagonized by increasing the CaCl2 concentration in the medium to 0.5 mM, in contrast to the well established mode of activation by the modulator protein, calmodulin. This suggests that the two effectors, DBA and calmodulin, probably act by different mechanisms. From our present observations, we suggest that the antisickling effect of DBA may be connected with the mobilization of calcium within red cells.  相似文献   

7.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

8.
Myometrium cell plasma membrane Ca2+, Mg(2+)-ATPase purified by an affinity chromatography on calmodulin-sepharose 4B is calmodulin-dependent enzyme. Concentration of calmodulin required for half-maximal activation of enzyme was about 26 nM. By unlike to the enzymes originated from other tissues sensitivity to the calmodulin of the myometrial sarcolemma Ca(2+)-transporting ATPase was lower: calmodulin increased Vmax of ATPase about 1.25-fold, the apparent constant of the activation of enzyme by Ca2+ failed to alter independently on the phospholipid presenting at the enzyme isolation.  相似文献   

9.
1. Two Ca-ATPases in the gill microsomal fraction from the killifish (Fundulus heteroclitus) have been characterized. 2. A (Ca2+ + Mg2+)-ATPase which has a high affinity for Ca2+, requires Mg2+ for activity and may be stimulated by calmodulin. 3. A (Ca2+ + Na+)-ATPase which has a low affinity for Ca2+ requires Na+ for activity, does not require Mg2+ and is probably not stimulated by calmodulin. 4. These enzymes may play a physiological role in killifish calcium regulation.  相似文献   

10.
A Wüthrich 《Cell calcium》1982,3(3):201-214
The purification to apparent homogeneity of a small protein from the cytosol of human red cells is described. The procedure consists of a combination of anion-exchange-chromatography, ultrafiltration, (NH4)2SO4- and heat-precipitation. The resulting protein is a potent inhibitor of (Ca2+ + Mg2+)-ATPase of erythrocyte membranes and of Ca2+-uptake into inside-out vesicles. Membrane (Na+ + K+)-ATPase is not affected by the inhibitor. The peptide migrates as a single band in SDS gels. Its apparent molecular weight is 19,000. It causes inhibition of the Ca2+-pump by decreasing Ca2+-affinity at all calmodulin concentrations.  相似文献   

11.
1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane.  相似文献   

12.
Inside-out vesicles of human erythrocytes took up Ca2+ against an electrochemical gradient. This Ca2+ uptake was dependent on ATP and was stimulated by calmodulin. Treatment of vesicles with 1 mM-EDTA exposed an apparent low-CA2+-affinity Ca2+-transport component with Kd of about 100 microM-Ca2+ or more. This was converted into a single high-Ca2+-affinity transport activity of Kd about 2.5 microM-Ca2+ in the presence of 2 micrograms of calmodulin/ml, showing that the decrease in transport activity after EDTA treatment was reversible. Vesicles not extracted with EDTA showed mainly apparent high-Ca2+-affinity kinetics even in the absence of added calmodulin. Trifluoperazine (30 microM) and calmodulin-binding protein (20 micrograms/ml) inhibited about 50% of the high-affinity Ca2+ uptake and (Ca2+ + Mg2+)-ATPase (Ca2+-activated, Mg2+-dependent ATPase) activity of these vesicles, indicating that the vesicles isolated by the procedure used retained some calmodulin from the erythrocytes. Comparison of Ca2+ transport and (Ca2+ + Mg2+)-ATPase activities in inside-out vesicles yielded a variable Ca2+/P1 stoichiometric ratio. At low free Ca2+ concentrations (below 20 micro-Ca2+), a Ca2+/P1 ration of about 2 was found, whereas at higher Ca2+ concentrations the stoichiometry was approx. 1. The stoichiometry was not significantly altered by calmodulin.  相似文献   

13.
Compound 48/80, an anti-calmodulin agent, reduces the maximum effect of ATP and does not affect the apparent affinity for ATP of the high-affinity site of the Ca2+-ATPase from calmodulin-bound membranes of human red cells. In the same preparation, 48/80 reduces more than 50-times the apparent affinity for ATP of the low-affinity site with little change in the maximum effect of the nucleotide at this site of the Ca2+-ATPase. The effects of compound 48/80 are independent of the concentration of Ca2+ between 30 and 200 microM. The apparent affinity of the low-affinity site of the Ca2+-ATPase for ATP is almost 100-fold less in calmodulin-stripped membranes than in calmodulin-bound membranes. In calmodulin-stripped membranes, exogenous calmodulin increases the apparent affinity for ATP up to the control values. These results indicate that apart from increasing the apparent affinity of the transport site for Ca2+, calmodulin also increases the apparent affinity of the regulatory site of the Ca2+-ATPase for ATP. Since this effect is exerted within the physiological ranges of ATP concentrations, it may participate in the physiological regulation of Ca2+ pumping by calmodulin.  相似文献   

14.
(1) The effects of treatments that mimic calmodulin in increasing the apparent affinity for Ca2+ were tested to see whether, like calmodulin, they also change the activation of the Ca2+-ATPase from human red cell membranes by ATP at the low-affinity site. (2) Short incubations with either trypsin or acidic phospholipids such as phosphatidylserine increased the apparent affinity for ATP at the low-affinity site. (3) Under conditions in which it increased the apparent affinity of the Ca2+-ATPase for Ca2+, EGTA failed to change the activation by ATP. (4) As in calmodulin-bound Ca2+-ATPase, compound 48/80 inhibited the activity of the enzyme in the presence of phosphatidylserine by lowering the apparent affinity for ATP at the low-affinity site, leaving the maximum velocity of the enzyme unaltered. (5) Compound 48/80 also inhibited the Ca2+-ATPase after partial proteolysis, but in this case it lowered the maximum activity, leaving the apparent affinity of the enzyme for ATP at the low-affinity site unaltered. (6) Inhibition of the Ca2+-ATPase by compound 48/80 in the absence of calmodulin suggests that the inhibitor can act directly on the enzyme.  相似文献   

15.
Intact human erythrocytes, initially depleted of Mg2+ by EDTA incubation in the presence of A23187, exhibit Mg(2+)-dependent phosphate production of around 1.5 mmol per liter cells.h, half-maximally activated at around 0.4 mM added free Mg2+. This appears to correspond to Mg(2+)-stimulated adenosine triphosphatase (Mg(2+)-ATPase) activity found in isolated membranes, which is known to have a similar activity and affinity for Mg2+. Vanadate (up to 100 microM) inhibited Mg(2+)-dependent phosphate production and ATP breakdown in intact cells. Over a similar concentration range vanadate (3-100 microM) transformed intact cells from normal discocytes to echinocytes within 4-8 h at 37 degrees C, and more rapidly in Mg(2+)-depleted cells. The rate of Ca(2+)-induced echinocytosis was also enhanced in Mg(2+)-depleted cells. These results support previous studies in erythrocyte ghosts suggesting that vanadate-induced shape change is associated with inhibition of Mg(2+)-ATPase activity localized in the plasma membrane of the red blood cell.  相似文献   

16.
A decrease in the reactivity of erythrocyte membrane (Ca2+ + Mg2+)-ATPase to calmodulin stimulation has been observed in aging red cells and in various types of hemolytic anemias, particularly in sickle red cell membranes. Unlike the aging process, the defect in the (Ca2+ + Mg2+)-ATPase from SS red blood cells is not secondary to a decrease in calmodulin activity and is already present in the least dense SS red blood cells separated on a discontinuous density gradient. Deoxygenated AS red cells were forced to sickle by lowering the pH, raising the osmolarity of the buffer (sickling pulse). Under these conditions an inhibition of the calmodulin-stimulated enzyme was observed only if several cycles of oxygenation/deoxygenation were applied. No alteration of the enzyme could be detected after submitting AS red blood cells to other conditions or in AA red blood cells submitted to the same treatments. This suggests that oxidative processes are involved in the alterations of the (Ca2+ + Mg2+)-ATPase activity. Treatment of membranes from AA erythrocytes by thiol group reagents and malondialdehyde, a by-product of auto-oxidation of membrane unsaturated lipids and a cross-linking agent of cytoskeletal proteins, led to a partial inhibition of the calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. We postulate that the hyperproduction of free radicals described in the SS red blood cells and involved in the destabilization of the membrane may be also responsible for the (Ca2+ + Mg2+)-ATPase failure.  相似文献   

17.
A Ca(2+)-ATPase with an apparent Km for free Ca2+ = 0.23 microM and Vmax = 44 nmol Pi/mg/min was detected in a rat parotid plasma membrane-enriched fraction. This Ca(2+)-ATPase could be stimulated without added Mg2+. However, the enzyme may require submicromolar concentrations of Mg2+ for its activation in the presence of Ca2+. On the other hand, Mg2+ could substitute for Ca2+. The lack of a requirement for added Mg2+ distinguished this Ca(2+)-ATPase from the Ca(2+)-transporter ATPase in the plasma membranes and the mitochondrial Ca(2+)-ATPase. The enzyme was not inhibited by several ATPase inhibitors and was not stimulated by calmodulin. An antibody which was raised against the rat liver plasma membrane ecto-ATPase, was able to deplete this Ca(2+)-ATPase activity from detergent solubilized rat parotid plasma membranes, in an antibody concentration-dependent manner. Immunoblotting analysis of the pellet with the ecto-ATPase antibody revealed the presence of a 100,000 molecular weight protein band, in agreement with the reported ecto-ATPase relative molecular mass. These data demonstrate the presence of a Ca(2+)-ATPase, with high affinity for Ca2+, in the rat parotid gland plasma membranes. It is distinct from the Ca(2+)-transporter, and immunologically indistinguishable from the plasma membrane ecto-ATPase.  相似文献   

18.
To investigate possible abnormalities in erythrocyte membrane enzyme activities in the pharmacogenetic disorder MH, membrane ATPase activities have been examined in erythrocyte ghosts prepared from red blood cells of MHS and normal swine. While no differences were noted in Mg2+-ATPase activities, the (Na+, K+)-ATPase activity of MHS erythrocyte ghosts was less than that of normal ghosts. Ca2+-ATPase activity exhibited low- and high-affinity Ca2+-binding sites in both types of erythrocyte ghost. While the Km for Ca2+ was greater for normal than for MHS erythrocyte ghosts at the high-affinity Ca2+-binding site, the reverse was true at the low-affinity Ca2+-binding site. Irrespective of the type of calcium binding site occupied, the Vmax for normal erythrocyte ghost Ca2+-ATPase activity was greater than that for MHS ghosts. In the presence of calmodulin, there was now no difference between MHS and normal erythrocyte ghosts in either the Km for Ca2+ or the Vmax of the Ca2+-ATPase activity. To determine if the calcium pumping activity of intact MHS and normal pig erythrocytes differed, calcium efflux from the 45Ca-loaded erythrocytes was determined; this activity was significantly greater for MHS than for normal erythrocytes. Thus, the present study confirms that there are abnormalities in the membranes of MHS pig red blood cells. However, we conclude that these abnormalities are unlikely to result in an impaired ability of MHS erythrocytes to regulate their cytosolic Ca2+ concentration.  相似文献   

19.
A proposed mechanism of action of hypoglycemic sulfonylureas is the prevention of transglutaminase-mediated endocytosis of insulin receptors. When activated by high levels of intracellular calcium, transglutaminase (TG) catalyzes the cross-linking of intracellular proteins to membrane proteins and modifies membrane structure and function. This study examined the effects of the sulfonylurea glipizide on TG activity in an erythrocyte model by assessing various membrane ATPase activities and high molecular weight protein polymer formation using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. To activate TG, red blood cells were exposed to 1 mM intracellular Ca2+ using 10(-5) M Ca2(+)-ionophore A23187. In Ca2(+)-stressed cells, calmodulin stimulation (0.1 micrograms/ml) of (Ca2+ + Mg2+)-ATPase was decreased to 21.2% of control activity. Increasing concentrations of calmodulin (0.1-3.0 micrograms/ml) could not overcome the inhibitory effects of TG on the (Ca2+ + Mg2+)-ATPase in Ca2(+)-stressed cells with or without glipizide. An increased Ca2+ sensitivity of calmodulin-independent (Ca2+ + Mg2+)-ATPase due to Ca2+ stress was seen in all Ca2(+)-stressed cells even in the presence of 1 mM glipizide. Structural changes were observed in the form of high molecular weight polymer formation. Cells exposed to high Ca2+ and glipizide (3 x 10(-5)-10(-3) M) showed no improvement in ATPase activity or protection from protein cross-linking compared with cells without the drug. We conclude that in this model glipizide fails to inhibit TG induced protein cross-linking and does not prevent the decrease in (Ca2+ + Mg2+)-ATPase activation in Ca2(+)-stressed red blood cells. This finding considerably weakens the proposal that sulfonylureas act by inhibiting TG activity.  相似文献   

20.
Active Ca2+ uptake and the associated (Ca2+ + Mg2+)-ATPase activity were studied under the same conditions in an inside-out vesicle preparation of human red blood cells made essentially by the procedure of Quist and Roufogalis (Journal of Supramolecular Structure 6, 375-381, 1977). Some preparations were treated with 1 mM EDTA at 30 degrees to further deplete them of endogenous levels of calmodulin. As the Ca2+ taken up by the EDTA-treated inside-out vesicles, as well as the non-EDTA treated vesicles, was maintained after addition of 4.1 mM EGTA, the vesicles were shown to be impermeable to the passive leak of Ca2+ over the time course of the experiments. In the absence of added calmodulin, both active Ca2+ uptake and (Ca2+ + Mg2+)-ATPase were sensitive to free Ca2+ over a four log unit concentration range (0.7 microM to 300 microM Ca2+) at 6.4 mM MgCl2. Below 24 microM Ca2+ the stoichiometry of calcium transported per phosphate liberated was close to 2:1, both in EDTA and non-EDTA treated vesicles. Above 50 microM Ca2+ the stoichiometry approached 1:1. When MgCl2 was reduced from 6.4 mM to 1.0 mM, the stoichiometry remained close to 2:1 over the whole range of Ca2+ concentrations examined. In contrast to the results at 6.4 mM MgCl2, the Ca2+ pump was maximally activated at about 2 microM free Ca2+ and significantly inhibited above this concentration at 1 mM MgCl2. Calmodulin (0.5-2.0 microgram/ml) had little effect on the stoichiometry in any of the conditions examined. The possible significance of a variable stoichiometry of the Ca2+ pump in the red blood cell is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号