首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimization of culture conditions for human corneal endothelial cells   总被引:5,自引:0,他引:5  
Summary Long-term cultivation of human corneal endothelial cells (HCEC) was optimized with respect to different components of the culture system: 25 different nutrient media, different sera, 6 mitogens and various substrates were tested in their ability to influence clonal growth and morphology of HCEC. F99, a 1∶1 mixture of the two media M199 and Ham’s F12, was the most effective basal medium in promoting clonal growth of HCEC. Among various sera, human serum and fetal bovine serum showed optimal growth promoting activities in combination with F99, whereas newborn bovine serum (NBS) was by far superior for the development of a typically corneal endothelial morphology. Crude fibroblast growth factor (FGF), or alternatively endothelial cell growth supplement, was absolutely essential for clonal growth of HCEC at low serum concentrations, for example 5% NBS. Formation of a monolayer with a morphology similar to corneal endothelium in vivo was observed only on culture dishes coated with basal membrane components such as collagen type IV, laminin, or fibronectin. The most pronounced effect on morphologic appearance was obtained by culturing the cells on the extracellular matrix (ECM) produced by bovine corneal endothelial cells. Moreover, ECM could substitute for crude FGF in clonal growth assays.  相似文献   

2.
The mouse teratocarcinoma cell line HR9 was investigated for proteoheparan sulphate production. Four species of proteoheparan sulphate molecules were isolated and purified to homogeneity. The proteoheparan sulphate isolated from the tissue-culture medium contains four heparan sulphate side-chains of 25 kDa each, and its core protein has an approximate molecular mass of 50 kDa. The proteoheparan sulphates associated with the cells were separated into three individual species: cell proteoheparan sulphate I exhibits structural characteristics which are very similar to the proteoheparan sulphate isolated from the tissue culture medium; cell proteoheparan sulphates II and III contain one heparan sulphate chain of 25 kDa and 20 kDa, and core proteins of approximately 30 kDa and 25 kDa respectively. Antisera, raised against the medium form, react specifically with basement membranes in various tissues by immunofluorescence. This staining pattern was compared to the pattern observed with an antiserum which we have obtained to a proteoheparan sulphate species isolated from the plasma membrane of bovine aortic endothelial cells. The structural and immunological data suggest that basement membrane and plasma membrane proteoheparan sulphates are different biosynthetic products and are not directly related to each other.  相似文献   

3.
Proteoglycans from human umbilical vein endothelial cells   总被引:1,自引:0,他引:1  
Human umbilical vein endothelial cells were incubated with [35S]sulphate and investigated for their proteoglycan production. By gel chromatography, ion-exchange chromatography and CsCl density-gradient centrifugation we obtained preparative amounts of the endothelial proteoheparan sulphate HSI and of proteochondroitin sulphate from the conditioned medium of mass-cultured human umbilical vein endothelial cells. Approximately 90% of the 35S-labeled material in the endothelial cell conditioned medium was proteochondroitin sulphate. This molecule, with a molecular mass of 180-200 kDa, contains four side-chains of 35-40 kDa and a core protein of 35-40 kDa. Two proteoheparan sulphate forms (HSI and HSII) from the conditioned medium were distinguished by molecular mass and transport kinetics from the cell layer to the medium in pulse-chase experiments. One major form (HSI), with an approximate molecular mass of 160-200 kDa a core protein of 55-60 kDa and three to four polysaccharide side-chains of 35 kDa each, was found enriched in the cellular membrane pellet. Another proteoheparan sulphate (HSII), with polysaccharide moieties of 20 kDa, is enriched in the subendothelial matrix (substratum).  相似文献   

4.
Cultures of endothelial cells and cell lines of endothelial origin were maintained at confluence without medium exchange for a period of 72 h. During this time period the concentration of nutrients — amino acids and glucose — and metabolic waste products — lactate and ammonium — was determined as well as cell vitality and cell numbers. Metabolic rates were calculated and compared for the different cell lines. Surprisingly the primary cells showed significantly higher rates of glucose and glutamine consumption, respectively lactate production than the immortalized cell lines. Except for one tumorigenic cell line all cells showed a significant participation of transaminases in glutamine/ammonium metabolism. Furthermore it could be shown that in routine culture there was no depletion of nutrients or critical accumulation of ammonium or lactate over a culture period of 72 h.Abbreviations BAEC bovine aorta endothelial cells - EC vascular endothelial cells - FGF fibroblast growth factor - HUVEC vascular endothelial cells from human umbilical cord veins - IF 1:1 mixture of Iscove's MDM and Ham's F12 basal media - MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid - NCS newborn calf serum - PBS phosphate buffered saline - TE 0.05% (w/V) trypsin, 0.02% (w/v) EDTA in PBS  相似文献   

5.
Primary bovine aortic endothelial cells were cultivated in serum supplemented medium without any additional growth factors. The anchorage dependent cells were propagated on Dormacell® microcarriers with covalently bound dimeric DEAE-groups at the surface of the dextrane beads. Cultivations were performed in 200 ml spinner cultures containing 1 g l–1 to 3 g l–1 of microcarriers. Out of five types of Dormacell® microcarriers with different ion exchange capacities ranging from 0.30 up to 0.65 meq g–1, corresponding to nitrogen contents from 1.2% to 2.9%, respectively, optimal attachment and growth of endothelial cells were obtained with beads of highest nitrogen content (2.9%). Cells were seeded withca. 5 viable cells per microcarrier being sufficient to achieve fully confluent microcarriers after 4 to 5 days. Glucose concentrations decreased from 21 mM to uppermost half of the original concentrations. 4 mM glutamine was rapidly consumed and virtually exhausted after the cells reached confluency. Lactate concentrations raised to a maximum of 7 mM in spinner cultures, but was found to be reutilized in the stationary phase after glutamine limitation occurred. Serine was found to be the second most prominent amino acid being almost exhausted at confluency whereas alanine was produced in noteworthy amounts. Considerable decrease was determined for threonine, lysine and arginine; low consumption rates were observed for leucine, phenylalanine and methionine. All other amino acids did not alter significantly throughout cultivation. These data support that bovine aortic endothelial cells are capable to utilize glucose and glutamine as well as lactic acid (after glutamine exhaustion) as energy and/or carbon source. Finally, batch cultures in a 2 liter membrane stirred bioreactor with bubble-free aeration were performed to produce large quantities of endothelial cells using microcarrier concentrations of 3 g l–1.Abbreviations BAE cells bovine aortic endothelial cells - NCS newborn calf serum - PBS phosphate buffered saline  相似文献   

6.
Various types of microcarriers were tested as growth substrate for the cultivation of either endothelial cells from human umbilical cord veins or of EA. hy926, an immortalized cell line of endothelial origin. Cell growth was tested on microcarriers in tissue culture flasks and spinner flasks. Solid (Cytodex type I, II, III, Gelibeads, Mica) and macroporous (Polyhipe, CultiSpher GL, PolyporE type I) microcarriers were tested. For the solid carriers the best results were obtained with Mica and for the macroporous carriers with CultiSpher GL.Abbreviations DAPI 4,6-diamidino-2-phenylindole-di-hydrochloride - DEAE diethylaminoethyl - EC vascular endothelial cells - FGF fibroblast growth factor - HUVEC vascular endothelial cells from human umbilical cord veins - IF 11 mixture of Iscove's MDM and F12 basal media - NCS newborn calf serum - PBS phosphate buffered saline - TE 0.05% (w/v) trypsin, 0.02% (w/v) EDTA in PBS  相似文献   

7.
Five types of dextran-based microcarriers (Dormacell, Pfeifer and Langen) with different concentrations of dimeric DEAE anion-exchange groups (nitrogen contents from 1.2 up to 2.9%) were tested as growth substrates for the cultivation of human umbilical vein endothelial cells (HUVECs). All microcarriers were gelatinized before use to improve cell adhesion. The one with the highest DEAE-group density was found to be most suitable for HUVEC propagation reaching final cell densities of 8×105 viable cells ml-1 (95% viability) using microcarrier concentrations of 3 g l–1. Furthermore, metabolic data of glucose/lactate and amino acid metabolism are presented in this study. The concentrations of 18 amino acids were monitored throughout cultivation. A considerable decrease of glutamine and inverse increase of glutamate was observed. Cultivation with initial glucose concentration of 16.5 mmol l–1 resulted in high glutamine consumption rates, whereas high glucose-supplemented starting culture medium (30 mmol l-1) gave considerably lowered rates, indicating altered glutamine metabolism due to different glucose feeding. The glucose consumption and lactate production rates increased 2.6 fold and 3.5 fold, respectively, due to switch over from low to high glucose supplemented cultures. The rate of glucose metabolism was found not to be directly related to cell growth, because almost identical growth rates and doubling times were obtained. Considering the remaining 16 amino acids measured, serine concentrations considerably declined and glycine as well as alanine concentrations raised strongly. Most amino acid values were found insignificantly altered during 14 days of cultivation. Spinner vessel cultures served as inoculum for up scale propagation of HUVECs in membrane stirred 2 liter bioreactors. About 5×109 HUVECs were produced, which were used for the isolation and structural characterization of glycosphingolipids, cell membrane compounds, which are suggested to be involved in e.g. selectin-carbohydrate interaction (cell-cell adhesion), carcinogenesis and atherogenesis.Abbreviations HUVECs human umbilical vein endothelial cells - PBS phosphate buffered saline  相似文献   

8.
《The Journal of cell biology》1986,103(6):2389-2402
Vascular endothelium in vivo appears to function as a polarized epithelium. To determine whether cellular polarity exists at the level of the plasma membrane, we have examined cultured endothelial monolayers for evidence of differential distribution of externally disposed plasmalemmal proteins at apical and basal cell surfaces. Lactoperoxidase beads were used to selectively label the apical surfaces of confluent endothelial monolayers, the total surfaces of nonenzymatically resuspended cells, and the basal surfaces of monolayers inverted on poly-L-lysine-coated coverslips, while maintaining greater than 98% viability in all samples. Comparison of the SDS PAGE radioiodination patterns obtained for each surface revealed a number of specific bands markedly enriched on either apical or basal surface. This polarized distribution involved membrane- associated as well as integral membrane proteins and was observed in several strains of bovine aortic endothelial cells, as well as in both primary and passaged human umbilical vein endothelial cells. In contrast, two morphologically nonpolarized cell types, bovine aortic smooth muscle and mouse peritoneal macrophages, did not display differential localization of integral membrane proteins. Polarized distribution of integral membrane proteins was established before the formation of a confluent monolayer. When inverted (basal-side-up) monolayers were returned to culture, the apical-side-up pattern was reexpressed within a few days. These results demonstrate that cell surface-selective expression of plasmalemmal proteins is an intrinsic property of viable endothelial cells in vitro. This apical/basal asymmetry of membrane structure may provide a basis for polarized endothelial functions in vivo.  相似文献   

9.
A heparin-binding protein was isolated from bovine uteri and purified to homogeneity. This protein appears as a double band of approx. 78 kDa in SDS/polyacrylamide-gel electrophoresis and has an isoelectric point of 5.2. The binding of heparin to this protein is saturable. No other glycosaminoglycan from mammalian tissue, such as hyaluronic acid, chondroitin sulphate, dermatan sulphate or keratan sulphate, binds to the 78 kDa protein. Dextran sulphate binds in a non-saturable fashion. Certain heparan sulphate polysaccharide structures are required for binding to the 78 kDa protein. Some proteoheparan sulphates, such as endothelial cell-surface proteoheparan sulphate, show only weak interaction with the 78 kDa protein in contrast with a basement-membrane proteoheparan sulphate from HR-9 cells. Antibodies against the 78 kDa protein inhibit binding of proteoheparan [35S]sulphate from basement membranes to smooth-muscle cells. Conventional antibodies, Fab fragments and some monoclonal antibodies, inhibit smooth-muscle cell proliferation in a similar range as that observed for heparin. The protein was detected in a variety of tissues and cells but not in blood cells. A possible role of this protein as a receptor for heparin or heparan sulphate and its function in the control of the arterial wall structure are discussed.  相似文献   

10.
Small vessel pulmonary endothelial cells were obtained from rat fetal lung at day 20 of gestation, and were maintained in culture to passage three for study. Endothelial cells grown on a collagen matrix with Dulbecco's minimal essential medium: Ham's F12 medium (1:1, v/v) supplemented with 20 ml/l fetal bovine serum, bovine pituitary extract (50 mg/l), endothelial cell growth supplement (100 mg/l), hydrocortisone (1 mg/l) and an increased (10 mmol/l) magnesium concentration retained the characteristic endothelial cell marker factor VIII antigen during the third passage in culture. The factors responsible for small vessel growth in the developing fetal lung are unknown. To test the hypothesis that small vessel pulmonary endothelial cells would respond to autocrine or paracrine growth factors the effects of conditioned media from fetal lung endothelial cells, fibroblasts and pneumocytes from lungs of the same gestational age were studied in vitro. None of the tested conditioned media had any effect on endothelial cell DNA synthesis in the presence of 20 ml/l fetal bovine serum. Since no paracrine or autocrine effects of conditioned media were observed, the effect of other growth factors that could be derived from the circulation, or from storage sites in subcellular matrix, were studied for effect. When endothelial cells were studied in the presence of 20 ml/l fetal bovine serum and 100 mg/l endothelial cell growth supplement they had enhanced DNA synthesis in response to the progression-type growth factors insulin (5 mg/l), insulin-like growth factor-I and insulin-like growth factor-II (20 micrograms/l) and epidermal growth factor (10 micrograms/l). In the absence of serum or endothelial growth supplement endothelial cell DNA synthesis was enhanced by the competence-type growth factors acidic and basic fibroblastic growth factors at 100 micrograms/l and platelet derived growth factor at 10 micrograms/l. In the absence of exogenous competence-type growth factors neutralizing antibodies to basic fibroblast growth factor reduce DNA synthesis. Of various cytokines tested only interleukin-1 (1 x 10(3) U/l) and tumor necrosis factor (25 x 10(4) U/l) had an effect on endothelial cell DNA synthesis. Endothelial cell division during fetal lung development may be controlled by progression growth factors present in serum, and by either autocrine release of the competence factor basic fibroblast growth factor or paracrine release of platelet-derived growth factor by other cell types.  相似文献   

11.
Different biochemical and cytochemical techniques were applied to characterize the sites of localization of thrombospondin in cultured endothelial cells. The results obtained by [35S]methionine labeling, immunoblotting, immunoprecipitation, fluorescence microscopy, ultracytochemistry, immunogold labeling, and silver enhancement experiments revealed that thrombospondin secreted by endothelial cells is structurally organized together with proteoheparan sulfate in spherical granules at the cell surface. These granules are about 100 to 300 nm in size. Heparin or enzymatic degradation with heparitinase, but not with ABC lyase, release thrombospondin from the cell surface. Fibronectin is expressed in the extracellular matrix of endothelial cells in a fibrillar organization, clearly distinct from the punctate pattern of thrombospondin on the cell surface. Furthermore, secreted thrombospondin is highly enriched together with fibronectin and proteoheparan sulfate in cell attachment sites and in cell migration tracks. In cell migration tracks proteoheparan sulfate more clearly resembles the fibrillar distribution pattern of fibronectin, whereas thrombospondin reveals a rather monodisperse pattern. The obtained data suggest preferential sites of interaction between thrombospondin and heparan sulfate proteoglycans on the cell surface and a participation of thrombospondin in cell adhesion and cell migration.  相似文献   

12.
M Boes  B L Dake  R S Bar 《Life sciences》1991,48(8):811-821
Endothelial cells in culture synthesize the growth factors transforming growth factor beta (TGF-beta), basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF) and, perhaps, insulin like growth factor I (IGF-I). We have previously demonstrated that IGF-I and PDGF have both high affinity receptors and stimulate glucose and AIB uptake in the microvessel cells under study and that IGF-I, but not PDGF, has similar high affinity receptors in cultured large vessel endothelial cells. In the present study, cultured bovine endothelial cells were exposed to these four growth factors to determine a) their effects on the acute metabolic processes of neutral amino acid (AIB) and glucose uptake and b) their interactions at the endothelial cell surface. In microvessel endothelial cells, each growth factor stimulated AIB and glucose uptake 2-4 fold whereas in large vessel endothelial cells only bFGF stimulated glucose uptake. Each growth factor had specific high affinity binding to the microvessel cells that was not influenced by the presence of the other growth factors. In large vessel endothelial cells, similar high affinity binding was present only for IGF-I and to a lesser degree TGF-beta. When cells were exposed to a given growth factor for 18 hours, homologous receptor downregulation was observed, with a maximal 60-95% decrease in surface binding. These findings suggest several potential levels of interaction of the growth factors TGF-beta, bFGF, PDGF and IGF-I in cultured vascular endothelial cells.  相似文献   

13.
The main purpose of this work was to identify the macromolecules carrying the surface charge of endothelial cells. This was done by measuring changes in cell electrophoretic mobility caused by enzymatic removal of glycocalyx components. Endothelial cells were removed from the bovine pulmonary artery using nonenzymatic procedures, plated, and identified by immunocytochemical methods and electron microscopy. Cultured cells were suspended in saline and placed in the lumen of a capillary in a Rank Brothers electrophoresis instrument. Voltage was applied between the ends of the capillary, and the velocity acquired by the cells was measured with a microscope. Preincubating the cells in protein-free saline for 1 h reduced the mobility by 25%. This reflects the loss of proteoheparan sulfate from the cell surface. Cell mobility was totally suppressed by exposing the entire cell surface to chondroitin sulfate lyase, but it was only slightly diminished when the enzyme was applied only to the cell side facing the culture medium. A partial decrease in mobility was obtained after enzymatic removal of either heparin, heparan sulfate, or collagen. The results indicate that sulfated glycosaminoglycans are the main carriers of the surface change in vascular endothelial cells. The asymmetrical effect of chondroitinase on the two sides of the cell indicates a distribution polarization for glycosaminoglycans in endothelial cells.  相似文献   

14.
M Kaibara  Y Kawamoto 《Biorheology》1991,28(3-4):263-274
An in vitro experimental system was developed to study the interaction between endothelial cells and blood as an early event in coagulation. A designed vascular vessel model tube is composed of a monolayer of bovine aorta endothelial cells (BAECs) cultured on an inner surface of a glass tube by means of a rotatory cultivation method. The change of fluidity during coagulation of blood in the tube was measured by a rheological technique. The rate of coagulation of blood in contact with endothelial cells was affected by cell culture conditions such as cell age, passage number of BAECs and substrate beneath endothelial cells. Fibrinolytic activity of the cells was examined by the rheological method. The present experimental system would be useful in examining the mechanism of blood coagulation based on the interaction between blood and endothelial cells as well as in evaluating endothelial cell functions.  相似文献   

15.
Monoclonal antibodies were generated to antigens on cultured human umbilical vein endothelial cells. Spleen cells from BALB/c mice, immunized with low passage cultures of human umbilical vein endothelial cells, were fused with the non-secretory myeloma line, P3 x 63Ag 8.653. Hybridoma supernatants were screened for the desired immunological reactivity using ELISA binding assays. Hybridomas secreting antibodies reacting with the immunizing endothelial cells, but not with peripheral blood mononuclear cells, were cloned by limiting dilution and three stable clones were chosen for study. Further testing by ELISA revealed that each antibody displayed a unique pattern of reactivity. One antibody, 14E5, reacted with the macrophage-like cell line DHL-2, cultured macrophages derived from peripheral blood monocytes, and macrophages derived from malignant effusions. The antibody failed to react with fibroblasts or bovine endothelial cells. The second antibody, 12C6, reacted with human and primate fibroblasts and endothelial cells derived from bovine arteries, but not with mature macrophages. The third clone, 10B9, reacted only with the immunizing endothelial cells and the immature-macrophage line U-937. All three antibodies failed to react with long-term human B or T lymphoblastoid cell lines, leukemic cell lines, or murine macrophage lines. None of the antibodies reacted with a battery of human epithelial derived cell lines or primary cultures of human epithelial cells. Indirect immunofluorescence assays revealed that the antigens were expressed on the cell surface. These antibodies should prove useful as differentiation markers of human endothelial cells and in studies of endothelial cell function.  相似文献   

16.
The 14C-acetate metabolic labeling of glycosaminoglycans (GAGs) was used to investigate the effect of high glucose level on the production of hyaluronic acid (HA), heparan sulphate (HS), chondroitin sulphate (CS) and dermatan sulphate (DS) by human immortalized umbilical vein endothelial cells. It is demonstrated that 30 mM glucose decreased the accumulation of HS and increased the accumulation of CS and DS in the cell layer, pericellular matrix and conditioned medium in 48 h of incubation. The modulation of the overall metabolism of sulphated GAGs by high glucose is in contrast to the observed redistribution of HA from the conditioned medium to the pericellular matrix of endothelial cells. The preincubation at 30 mM glucose increased also the attachment of hyaluronidase-treated endothelial cells to HA-coated surface and had no effect on the cell attachment to poly-D-lysine, indicating the alterations of CD44 binding to immobilized HA. The treatment of endothelial cells with p-nitrophenyl-beta-D-xylopyranoside, which inhibits the coupling of CS to the core protein, attenuated high glucose-induced pericellular HA accumulation and decreased cell attachment to HA-coated surface. It is supposed the implication of CD44-related CS in the accumulation of pericellular HA by endothelial cells exposed to high glucose level.  相似文献   

17.
The production and localization of laminin, as a function of cell density (sparse versus confluent cultures) and growth stage (actively growing versus resting cultures), has been compared on the cell surfaces of cultured vascular and corneal endothelial cells. Comparison of the abilities of the two types of cells to secrete laminin and fibronectin into their incubation medium reveals that vascular endothelial cells can secrete 20-fold as much laminin as can corneal endothelial cells. In contrast, both cell types produce comparable amounts of fibronectin. Furthermore, if one compares the secretion of laminin and fibronectin as a function of cell growth, it appears that the laminin released into the medium by either vascular or corneal endothelial cells, is a function of cell density and cell growth, since this release is most pronounced when the cells are sparse and actively growing, and decreases by 10- and 30-fold, respectively, when either vascular or corneal endothelial cell cultures become confluent. With regard to fibronectin secretion, no such variation can be seen with vascular endothelial cell cultures, regardless of whether they are sparse and actively growing or confluent and resting. Corneal endothelial cell cultures, demonstrated a twofold increase in fibronectin production when they were confluent and resting as compared to when they were sparse and actively growing. When the distribution of laminin versus fibronectin within the apical and basal cell surfaces of cultured corneal and vascular endothelial cells is compared, one can observe that unlike fibronectin, which in sparse and subconfluent cultures can be seen to be associated with both the apical cell surface. In confluent cultures, laminin can be found associated primarily with the extracellular matrix beneath the cell monolayer, where it codistributes with type IV collagen.  相似文献   

18.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

19.
A variant endothelial cell type was found to arise spontaneously from cultures of bovine aortal endothelial cells. This variant showed no contact inhibition and overgrew confluent cultures of wild-type endothelial cells. Unlike other reported variants of this cell type produced by chemical mutagenesis or by withdrawal of polypeptide growth factor, this variant retained the capacity to synthesis factor VIII antigen, but showed no alteration from wild-type in capacity to adsorb platelets. The variant also had an increased capacity to bind FITC-conjugated con A to its surface.  相似文献   

20.
Cultivation of the new immortalized hepatocyte cell line HepZ was performed with a 1:1 mixture of DMEM and Ham's F12 media containing 5% FCS. The cells were grown in their 40th passage in 100 mL and 1 L volumes in spinner flasks and in a bioreactor, respectively. For the production of adherently growing HepZ cells macroporous CultiSpher G gelatin microcarriers were used in various concentrations from 1 to 3 g/L. The cells were seeded in a density of 2 x 10(5) cells/mL when using a microcarrier concentration of 1 g/L and 5 x 10(5) cells/mL at a microcarrier concentration of 3 g/L. After 7 days of cultivation a maximum cell concentration of 4.5 x 10(6) cells/mL was obtained in the spinner culture using a microcarrier concentration of 1 g/L. With bubble-free aeration and daily medium exchange from day 7, 7.1 x 10(6) cells/mL were achieved in the bioreactor using a microcarrier concentration of 3 g/L. The cells exhibited a maximum specific growth rate of 0.84 per day in the spinner system and 1.0 per day in the bioreactor, respectively. During the growth phase the lactate dehydrogenase (LDH) activity rose slightly up to values of 200 U/L. At the end of cultivation the macroporous carriers were completely filled with cells exhibiting a spherical morphology whereas the hepatocytes on the outer surface were flat-shaped. Concerning their metabolic activity the cells predominantly consumed glutamine and glucose. During the growth phase lactate was produced up to 19.3 mM in the spinner culture and up to 9.1 mM in the bioreactor. Maximal oxygen consumption was 1950 nmol/(10(6) cells. day). HepZ cells resisted a 4-day long chilling period at 9.5 degrees C. The cytochrome P450 system was challenged with a pulse of 7 microgram/mL lidocaine at a cell density of 4.5 x 10(6) cells/mL. Five ng/mL monoethylglycinexylidide (MEGX) was generated within 1 day without phenobarbital induction compared to 26 ng/mL after a preceded three day induction period with 50 microgram/mL of phenobarbital indicating hepatic potency. Thus, the new immortalized HepZ cell line, exhibiting primary metabolic functions and appropriate for a mass cell cultivation, suggests its application for a bioartificial liver support system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号