首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary microcirculatory responses to leukotrienes B4, C4 and D4 in sheep   总被引:1,自引:0,他引:1  
The pulmonary microvascular responses to leukotrienes B4, C4, and D4 (total dosage of 4 micrograms/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymph fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow X lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (Ppa) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased Ppa to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Qlym) and lymph-to-plasma protein concentration (L/P) ratio in either group. LTD4 increased Ppa and Qlym in both acute and awake sheep; Qlym increased without a significant change in the L/P ratio. The LTD4-induced rise in Ppa occurred in association with an increase in plasma thromboxane B2 (TxB2) concentration. The relatively small increase in Qlym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greater precapillary constriction with LTC4 because Qlym did not change and greater postcapillary constriction with LTD4 because Qlym increased with the same rise in Ppa.  相似文献   

2.
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip . The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml−1− 10 ug ml−1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

3.
U937 and THP-1 cells possess some characteristics of human mononuclear phagocytes, cells which synthesize and release LTB4, LTC4, and LTD4. Incubation of these cells with recombinant human interferongamma (IFN-gamma) or Phorbol Myristate Acetate (PMA) induces a more differentiated cell state. We hypothesized that U937 and THP-1 cells would release LTB4, LTC4, and LTD4 in response to stimulation with the non-physiologic agonist, calcium ionophore A23187 and that preincubation with IFN-gamma or PMA might alter leukotriene release by thes cells. We cultured both cell lines for 48 hours in the presence and absence of IFN-gamma (10000 units/ml)n and for 120 hours in the presence and absence of PMA (160 nM) and then challenged them with A23187 (5uM) for 30 minutes at 37°C. The supernatants were deproteinated and assayed by RIA for LTB4 and LTC4 and by RP-HPLC for LTB4, LTC4, and LTD4. Neither U937 nor THP-1 cells released quantities of leukotrienes detectable by RIA, <0.3ng/5 × 106 cells. Peripheral blood mononuclear phagocytes from normal volumteers, cultured and challenged in vitro at under identical conditions, released 11.3 ± 2.9 ng LTB4 and 2.0 ± 1.5 ng LTC4/106 viable monocytes. The lack of leukotriene production by U937 and THP-1 cells was not altered by preincubation for 48 hours with IFN-gamma (n=3) nor by preincubation with PMA for 120 hours (n=3). We conclude 1) U937 and THP-1 cells do not appear to be appropriate in vitro models for the examination of leukotriene release from normal mononuclear phagocytes. 2) Pre-incubation of U937 and THP-1 cells with IFN-gamma or PMA under the conditions tested, does not induce the ability of these cell lines to release leukotrienes.  相似文献   

4.
The homogenate of rat basophilic leukemia cells produces both the dihydroxy-leukotrienes and the peptido-leukotrienes (LT) C4, D4 and E4. The enzymes responsible for the formation of LTA4 and LTB4 are in the soluble fraction while the enzymes for LTC4, LTD4 and LTE4 are particulate (10, 000 × g pellet). Centrifugation of the 10, 000 × g pellet over a sucrose gradient resulted in two subfractions, a membrane fraction and a pellet (sucrose pellet.) The fractions were incubated with LTC4, and the products were identified by bioassay, HPLC and UV spectra. The membrane fraction contained the enzymes γ-glutamyl transpeptidase and amino peptidase which convert LTC4 to LTD4 and LTD4 to LTE4, respectively. When incubated with LTC4, the membrane fraction showed a dose dependent formation of LTD4 and a time course which reached a plateau at 30 to 45 minutes. Addition of serine borate blocked the formation of LTD4, and cysteine blocked LTE4. We conclude that the γ-glutamyl transpeptidase and the amino peptidase which produce LTD4 and LTE4 respectively are plasma membrane bound.  相似文献   

5.
The effects of leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in the feline mesenteric vascular bed were investigated under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. Intra-arterial injections of LTC4 and LTD4 (0.3–3.0 μg) increased perfusion pressure in a dose-related fashion. Vasoconstrictor responses to LTC4 and LTD4 were similar to norepinephrine (NE) whereas mesenteric vasoconstrictor response to the thromboxane analog, U46619, was markedly greater than were responses to LTC4 and LTD4. Meclofenamate in a dose that greatly attenuated the systemic depressor response to arachidonic acid was without effect on vasoconstrictor responses to LTC4 and LTD4, NE and U46619 in the mesenteric vascular bed. The present data show that LTC4 and LTD4 possess significant vasoconstrictor activity in the feline mesenteric vascular bed. In addition, the present data suggest that products of the cyclooxygenase pathway do not mediate vasoconstrictor responses to LTC4 and LTD4 in the intestinal circulation of the cat.  相似文献   

6.
Using a laser-Doppler-flowmeter the microvascular response to LTC4 and LTD4 was measured. Intradermal injection of 1 Ug LTC4 and LTD4 caused an increase in the microvascular cutaneous bloodflow. The increase in flow was equal to that caused by histamine in equimolar amounts. Blocking the triple-response did not change the response. The values measured after injection of histamine and leucotrienes were about 10–15 times the values found in undisturbed skin and represents probably a maximally dilated vascular bed. Injection of the leucotrienes caused a slight sensation of pain.  相似文献   

7.
The actions of leukotriene (LT) C4 and D4 on the systemic arterial pressure and the insufflation pressure in guinea pigs and rabbits were examined. In guinea pigs, 0.3 – 3 nmole/kg of LTC4 and 0.1 – 1.0 nmole/kg of LTD4 administrated from left jugular vein caused dose-dependent increase of the airway resistance measured by the Konzett-Rössler method and a triphasic blood pressure response; an initial hypotension, a secondary hypertension and a third long-lasting hypotension. All of the hypertensive phase and 100 – 150% of the increase of the airway resistance by LTC4 and LTD4 were inhibited by a selective thromboxane synthetase inhibitor, OKY-1581 (10 mg/kg, i.v.) and only the hypertension was observed. Indomethacin (10 mg/kg, i.p.) also inhibited not only the airway resistance increase, but also the prolonged hypotension by LTC4 and shortened the duration of the hypotension by LTD4. It is suggested that thromboxane might be involved in bronchoconstriction and hypertensive effects by LTC4 and LTD4 and that hypotensive prostaglandin might be involved in the hypotensive phase after LTC4 and LTD4. In rabbits, the increse of the airway resistance by LTC4 and LTD4 (upto 100 nmole/kg, i.v.) was negligible and only the hypotension was observed.  相似文献   

8.
The activity of synthetic LTC4 was tested in guinea-pig ileum and was 200 times more potent than histamine in contraction of the ileum (3 × 10?11 M- 3 × 10?9 M). The activities of LTC4 and LTD4 in increased vascular permeability in guinea pigs, rats and rabbits were compared with those histamine, bradykinin and prostaglandin (PG) E2. LTC4 was approximately equipotent to bradykinin on a molar basis in guinea pigs and rats and 5–100 times more potent than histamin. LTD4 was about 10 times more potent than LTC4 in guinea pigs and as equipotent to LTC4 in rats. On the contrary, in rabbits, neither LTC4 (upto 30 nmole/site) nor LTD4 (1 nmole/site) induced the dye exduation. These results show that species difference is present in activity of LTC4 and LTD4 in vascular permeability. Furthermore, in guinea pigs, the vascular permeability increased by LTC4 was not affected after pretreatment with pyrilamine (2.5 mg/kg, i.v.), and LTC4 and LTD4 did not potenciate the activity of bradykinin in vascular permeability.  相似文献   

9.
Although certain prostaglandins have been found to be inhibitory to nerve-evoked salivary flow, little is known of the effects the leukotrienes on salivary secretion. It was the purpose of this investigation to examine the effects of leukotrienes C4 (LTC4) and D4 (LtD4) on salivary secretion in the rat, using methacholine or substance P to induce basal secretion, and to test whether or not the observed effects of these eicosanoids were receptor-mediated by using the leukotriene receptor blocker FPL-55712.Methacholine (3 × 10−4 M), or substance P (1 × 10−6 M) was infused intra-arterially to stimulate secretion and saliva was collected separately from the parotid gland and the submandibular gland of anesthetized rats. LTC4 and LTD4 (each at 1 × 10−9 to 1 × 10−6 M) were found to reduce methacholine- and substance P-induced salivary flow in a dose-related manner. Salivary protein concentration and amylase activity were not significantly altered by the leukotrienes; however, arginine-esterase activity, stimulated by substance P, was increased by both leukotrienes. FPL-55712 (1 × 10−8 M) was shown to reduced the inhibitory effects of LTC4 and LTD4, suggesting the involvement of leukotriene receptors for these agents in their action.  相似文献   

10.
Chemoattractant arachidonate lipoxygenase products have been recovered from the skin lesions of psoriasis, and may play a role in eliciting the intra-epidermal neutrophil infiltrate that characterises this disease. In view of evidence for lipoxygenase activity in psoriasis, the characteristic vasolidation in psoriatic lesions, and the vasodilator properties of leukotriene (LT) C4 and D4 in human skin, the presence of these LTs in psoriatic lesions has been investigated. Skin chamber fluid from abraded psoriatic lesions contained significantly greater amounts of immunoreactive material than that from clinically normal skin, as determined by a double antibody radioimmunoassay (RIA) that uses antiserum cross-reacting with both LTC4 and LTD4. Purification of lesional chamber fluid and scale extracts by high performance liquid chromatography (HPLC) and RIA of fractions showed immunoreactivity which co-eluted with standard LTC4 and LTD4. These findings suggest that LTC4 and LTD4 may play a role in mediating the vasodilation and increased blood flow that characterise psoriatic skin lesions.  相似文献   

11.
Rat carrageenin-induced pleurisy was used as an acute exudative inflammatory model. The crude ethanol extract of the pleural fluid at 5 hr after carrageenin injection caused the very slow contraction of guinea-pig ileum, which was antagonized by FPL 55712 (1 μg/ml). The ethanol extract was cleaned by LH-20 and was rendered for separation of LTC4 and LTD4 by reversed-phase high-performance liquid chromatography (HPLC). Two peaks which showed the same retention time on HPLC as those of LTC4 and LTD4 had the contractile activity of guinea-pig ileum and the ratios of the contractile activity to the height on HPLC agreed with those of synthetic LTC4 and LTD4. Two peaks of Δ6-trans-LTB4, 5S,12R-(E,E,E,Z)-diHETE and 5S, 12S-(E,E,E,Z)-diHETE, were detected, but the appreciable amount of LTB4 was smaller than that of each Δ6-trans-LTB4 in the pleural fluid at 5 hr.  相似文献   

12.
We examined the effects of thromboxane synthetase inhibition with OKY-1581 and OKY-046 on pulmonary hemodynamics and lung fluid balance after thrombin-induced intravascular coagulation. Studies were made in anesthetized sheep prepared with lyng lymph fistulas. Pulmonary intravascular coagulation was induced by i.v. infusion of α-thrombin over a 15 min period. Thrombin infusion in control sheep resulted in immediate increases in pulmonary artery pressure (P ) and pulmonary vascular resistance (PVR), which associated with rapid 3-fold increase in pulmonary lymph flow (Q̇lym) and a delayed increase in lymph-to-plasma protein concentration (L/P) ratio, indicating an increase in the pulmonary microvascular permeability to proteins. Thrombin-induced intravascular coagulation alos increased arterial thromboxane B2 (a metabolite of thromboxane A2) and 6-keto-PGF concentrations (a metabolite of prostacyclin). Both OKY-1581 and OKY-046 prevented thromboxane B2 and 6-keto-PGF generation. The initial increments in P and PVR were attenuated in both treated groups. The increases in Q̇lym were gradual in the treated groups but attained the same levels as in control group. However, the increases in Q̇lym were associated with decreases in L/P ratio. In both treated groups, the leukocyte count decreased after thrombin infusion but then increased steadily above the baseline value, whereas the leukocyte count remained depressed in the control group after thrombin. These studies indicate that a part of the initial pulmonary vasoconstrictor response to thrombin-induced intravascular coagulation is mediated by thromboxane generation. In addition, thromboxane may also contribute to the increase in lung vascular permeability to proteins that occurs after intravascular coagulation and this effect may be mediated by a thromboxane-neutrophil interaction.  相似文献   

13.
Leukotriene C4 (LTC4) is synthesized by binding of glutathione to LTA4, an epoxide derived from arachidonic acid, and further metabolized to LTD4 and LTE4. We previously prepared a monoclonal antibody with a high affinity and specificity to LTC4. To explore the structure of the antigen-binding site of a monoclonal antibody against LTC4 (mAbLTC), we isolated full-length cDNAs for heavy and light chains of mAbLTC. The heavy and light chains consisted of 461 and 238 amino acids including a signal peptide with molecular weights of 51,089 and 26,340, respectively. An expression plasmid encoding a single-chain antibody comprising variable regions of mAbLTC heavy and light chains (scFvLTC) was constructed and expressed in COS-7 cells. The recombinant scFvLTC showed a high affinity with LTC4 comparable to mAbLTC. The scFvLTC also bound to LTD4 and LTE4 with 48% and 17% reactivities, respectively, as compared with LTC4 binding, whereas the antibody showed almost no affinity for LTB4.  相似文献   

14.
When chopped porcine pulmonary arteries were incubated with calcium ionophore A23187 (1) in the presence of indomethacin there was a time dependent generation of a substance which produced contractions of superfused strips of guinea-pig ileum smooth muscle (GPISM) which were indistinguishable from those induced by LTD4. This material however had a different retention time from LTD4 when subjected to HPLC and co-chromatographed with synthetic LTE4. In addition to LTE4 a substance which had properties indistinguisable from those of LTB4 when assayed on a combination of guinea-pig lung parenchymal strips (GPP) and GPISM (2) was generated from the pulmonary artery. This substance co-chromatographed with synthetic LTB4. The adventitia and intima were the richest source of LTE4, the adventitia releasing slightly more than the intima. The output of LTB4 and LTE4 was inhibited by 6,9-deepoxy-6,9-(phenylimino)-Δ6,8 prostaglandin I1 (U-60,257). Nordihydroguaiaretic acid (NDGA) inhibited the generation of LTE4.  相似文献   

15.
The effects of leukotrienes C4 (LTC4) and D4 (LTD4) on the secretion by human bronchial mucosa of [14C]glucosamine-labeled, trichloro-acetic acid/phosphotungstic acid-precipitable glycoprotein and lysozyme were evaluated . LTC4 and LTD4, in the concentration range of 0.16 to 1600 nM, induced a dose-related increase in the release of radiolabeled glycoprotein, but not of lysozyme. This secretagogue effect was selective for high molecular weight glycoproteins of about 2–5 × 106 daltons, and the median effective concentrations (EC50 of LTC4 of 9.4 × 10−9 M and of LTD4 of 2.44 × 10−8 M, indicate that these leukotrienes are approximately 100-fold more potent than the cholinergic agonist methacholine. Incubation of [14C]glucosamine-labeled bronchial mucosal explants with LTC4 or LTD4 for six sequential 15-min periods revealed a rapid, progressive decrement in glycoprotein release, compatible with stimulatory action on secretion rather than augmentation of the rate of glycoprotein synthesis. This interpretation is also consistent with the finding that the specific activity (ratio of bound radiolabel: protein content) of the macromolecular glycoprotein secreted by the explants is not changed with stimulation of release by the leukotrienes. Based upon the activity of synthetic leukotriene analogs, the specific C-6 chirality of the sulfidopeptide of LTD4, the presence of a hydroxyl at C-5 and the presence of eiconsanoid carbons 9–20 were no importance for secretagogue activity. These findings contrast with the stereochemical requirements for the spasmogenic response to sulfidopeptide leukotrienes and suggest that leukotriene-induced secretion is not likely to be mediated via a specific receptor.  相似文献   

16.
The effects of chemically-synthesised leukotrienes C4 and D4 (5(S) hydroxy-6(R)-δ-glutamylcysteinylglycinyl-7,9,11,14-eicosa-4tetraenoic acid, LTC4; 5(S) hydroxy-6(R)-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid, LTD4) on the microvasculature have been measured in guinea-pig skin using [125I]-albumin accumulation to measure plasma exudation and 133Xe clearance to measure blood flow changes. As previously shown using biosynthetic material, LTD4 caused vasoconstriction resulting in reduced blood flow. Similarly, LTC4 was found to have vasoconstrictor activity but was more potent and had a steeper dose-response curve than LTD4. There was no evidence of conversion of exogenous arachidonic acid to vaso-constrictor activity in the skin in vivo (in the absence of another stimulus): intradermally injected arachidonic acid produced vasodilatation, but induced little change in blood flow in animals pretreated with indomethacin. The vasodilator effect of arachidonic acid is presumed to be due to conversion to either PGE2 or PGI2. These results suggest that cyclo-oxygenase is normally active in the skin, whilst lipoxygenase requires activation in some way. As reported in a previous study, LTD4 induced plasma exudation when injected into the skin, but pronounced responses could only be induced by LTD4 mixed with a vasodilator prostaglandin such as PGE2. In contrast, LTC4 induced no exudation when tested alone and little when PGE2 was added. However, evidence was obtained that LTC4 has some permeability-increasing activity which is marked by its potent vasoconstrictor activity.  相似文献   

17.
In order to examine the modulation of leukotriene (LT) release, the PAF-acether-mediated stimulation of these compounds in rat lung was studied. Release of LTC4, LTD4 and LTE4 in both perfused and chopped lung preparations was measured using HPLC and radioimmunoassay. Pre-incubation or pre-infusion of the tissue with indomethacin and PGE2 was conducted to investigate the effect of cyclooxygenase inhibitors and products on the lipoxygenase pathway. In addition, the effects of LT levels of pre-incubation with vasoactive intenstinal polypeptide (VIP) in chopped lung were observed.In perfused rat lung, indomethacin reduced the levels of LTC4 relative to LTD4 as measured in the first 2 min after stimulation of the lung by PAF-acether. Chopped lung preparations, incubated for 15 min. exhibited higher levels of LTC4 and LTD4 in indomethacin-treated samples, this increases being effectively reversed by PGE2.In the VIP pre-incubation experiments clear inhibition of peptido -leukotriene synthesis was observed, with no LTC4 and only low levels of LTD4 and LTE4 observed in VIP-incubated samples. In preliminary experiments using rabbit C5a des arg and PAF-acether on rabbit lung parenchyma strips to stimulaet LT release, disodium cromoglycate pre-incubation was observed to inhibit this release.Inhibition of the 5-lipoxygenase pathway of PGE2 is supported by these experiments. VIP appears to act as an inhibitor of LTC4 and LTD4 biosynthesis or release in this model. Too little is known that peptidergic actions to postulate a mechanism by which a neuroendocrine peptide exerts control of release of arachidonate metabolites; however, VIP is associated with muscarinic stimulation (1) and has been found in mast cells (2).  相似文献   

18.
The biological actions of pure slow-reacting substance of anaphylaxis (SRS-A) from guinea-pig lung, pure slow-reacting substances (SRS) from rat basophilic leukaemia cells (RBL-1) and synthetic leukotrienes C4 (LTC4) and D4 (LTD4) have been investigated on lung tissue from guinea pig, rabbit and rat. In the guinea pig, the leukotrienes released cyclo-oxygenase products from the perfused lung and contracted strips of parenchyma. The effects of SRS-A, SRS and LTD4 were indistinguishable. LTC4 and LTD4 had similar actions although LTD4 was more potent than LTC4. Indo-methacin (1 μg/ml) inhibited the release of cyclo-oxygenase products from perfused guinea-pig lung and caused a marked reduction in contractions of guinea-pig parenchymal strips (GPP) due to LTC4 and LTD4. The residual contraction on the GPP was abolished by FPL 55712 (0.5 – 1.0 μg/ml). It appears, therefore, that a major part of the constrictor actions of LTC4 and LTD4 in guinea-pig lung are mediated by myotropic cyclo-oxygenase products, i.e. thromboxane A2 (TxA2) and prostaglandins (PGs).In rabbit and rat lung, however, SRS-A, SRS and the leukotrienes were much less potent in contracting parenchymal strips and there was little evidence of the release of cyclo-oxygenase products. FPL 55712 at a concentration of 1 μg/ml failed to antagonise leukotriene-induced contractions.  相似文献   

19.
To investigate the effects of glucocorticoids on leukotriene (LT) generation in patients with cystic fibrosis (CF), we evaluated calcium ionophore A23187-induced LTB4 and LTC4 production by leukocytes with and without pretreatment with dexamethasone. The CF patients were in good condition and did not have acute infection. There were no significant differences in LTB4 and LTC4 production without dexamethasone pretreatment between the CF patients and controls. However, the ratios of LTB4 and LTC4 production by leukocytes preincubated with dexamethasone to those of leukocytes without dexamethasone pretreatment were significantly higher in the CF patients than in the controls (both p < 0.05). Our data suggest that the response of LTB4 and LTC4 production to dexamethasone is disturbed in patients with CF. The generation of LTs may be enhanced due to a disturbance in glucocorticoid suppression.  相似文献   

20.
Cumulative dose-response curyes to leukotriene C4 (LTC4) and leukotriene D4 (LTD)4 were obtained on indomethacin (5 μM) treated isolated guinea pig tracheal spiral strips. LTC4 curves, in the presence of either glutathione (GSH; 10 mM) or L-serine borate (SB; 45 mM), were not antagonized by FPL-55712 (3 μM), a selective LTD4 receptor antagonist. LTC4 curves on trachea treated with a lower concentration of GSH (1 mM), and LTD4 curves were competitively antagonized by FPL-55712. LTC, curves on GSH (10 mM) treated trachea were 2 fold to the left of those on SB treated tissues. This effect of GSH was blocked by pretreatment with nordihydro-guiaretic acid (30 μM), an inhibitor of 5-lipoxygenase.GSH (10 μM) and SB (45 mM) are effective inhibitors of conversion of LTC4 into functionally important levels of LTD4 by the guinea pig trachea. In addition, GSH appeares to enhance LTC4 responsiveness by increasing synthesis of a contractile 5-lipoxygenase product(s), possibly LTC4. From the data it is suggested that for inhibition of LTC4 metabolism, SB may be more usefull when examining responses to exogenously applied LTC4, while GSH (10 mM) may be useful when examining responses to endogenously generated LTC4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号