首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Competing species benefit from eavesdropping on each other's signals by learning about shared resources or predators. But conspicuous signals are also open to exploitation by eavesdropping predators and should also pose a threat to other sympatric prey species. In western Finland, sibling voles Microtus rossiameridionalis and field voles M. agrestis compete for food and space, and both species rely upon scent marks for intraspecific communication. Both vole species are prey to a range of terrestrial scent hunting predators such as least weasels, however, the competitively superior sibling voles are taken preferentially. We tested in large out‐door enclosures whether field voles eavesdrop on the signals of its competitor, and whether they behave as though this eavesdropping carries a risk of predation. We presented field voles with scent marks from unknown conspecifics and sibling voles and measured their visitation, activity and scent marking behaviours at these scents under high (weasel present) and low (weasel absent) predation risk. Field voles readily visited both field and sibling vole scents under both high and low predation risk; however their activity at sibling vole scent marks declined significantly under increased predation risk. In contrast, predation risk did not affect field voles’ activity at conspecific scents. Thus, field voles were compelled to maintain eavesdropping on heterospecific scents under an increased risk of predation, however they compensated for this additional risk by reducing their activity at these risky scents. Scent marking rates declined significantly under high predation risk. Our results therefore reveal a hidden complexity in the use of social signals within multi‐species assemblages that is clearly sensitive to the potential for increased predation risk. The predation risks of interspecific eavesdropping demonstrated here represents a significant generalisation of the concept of associational susceptibility.  相似文献   

2.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

3.
The relationship between predators and prey is thought to change due to habitat loss and fragmentation, but patterns regarding the direction of the effect are lacking. The common prediction is that specialized predators, often more dependent on a certain habitat type, should be more vulnerable to habitat loss compared to generalist predators, but actual fragmentation effects are unknown. If a predator is small and vulnerable to predation by other larger predators through intra-guild predation, habitat fragmentation will similarly affect both the prey and the small predator. In this case, the predator is predicted to behave similarly to the prey and avoid open and risky areas. We studied a specialist predator’s, the least weasel, Mustela nivalis nivalis, spacing behavior and hunting efficiency on bank voles, Myodes glareolus, in an experimentally fragmented habitat. The habitat consisted of either one large habitat patch (non-fragmented) or four small habitat patches (fragmented) with the same total area. The study was replicated in summer and autumn during a year with high avian predation risk for both voles and weasels. As predicted, weasels under radio-surveillance killed more voles in the non-fragmented habitat which also provided cover from avian predators during their prey search. However, this was only during autumn, when the killing rate was also generally high due to cold weather. The movement areas were the same for both sexes and both fragmentation treatments, but weasels of both sexes were more prone to take risks in crossing the open matrix in the fragmented treatment. Our results support the hypothesis that habitat fragmentation may increase the persistence of specialist predator and prey populations if predators are limited in the same habitat as their prey and they share the same risk from avian predation.  相似文献   

4.
In prey communities with shared predators, variation in prey vulnerability is a key factor in shaping community dynamics. Conversely, the hunting efficiency of a predator depends on the prey community structure, preferences of the predator and antipredatory behavioural traits of the prey. We studied experimentally, under seminatural field conditions, the preferences of a predator and the antipredatory responses of prey in a system consisting of two Myodes species of voles, the grey-sided vole (M. rufocanus Sund.) and the bank vole (M. glareolus Schreb.), and their specialist predator, the least weasel (Mustela nivalis nivalis L.). To quantify the preference of the weasels, we developed a new modelling framework that can be used for unbalanced data. The two vole species were hypothesised to have different habitat-dependent vulnerabilities. We created two habitats, open and forest, to provide different escape possibilities for the voles. We found a weak general preference of the weasels for the grey-sided voles over the bank voles, and a somewhat stronger preference specifically in open habitats. The weasels clearly preferred male grey-sided voles over females, whereas in bank voles, there was no difference. The activity of voles changed over time, so that voles increased their movements immediately after weasel introduction, but later adjusted their movements to times of lowered predation risk. Females that were more active had an elevated mortality risk, whereas in the case of males, the result was the opposite. We conclude that, in vulnerability to predation, the species- or habitat-specific characteristics of these prey species are playing a minor role compared to sex-specific characteristics.  相似文献   

5.
Many prey animals experience temporal variation in the risk of predation and therefore face the problem of allocating their time between antipredator efforts and other activities like feeding and breeding. We investigated time allocation of prey animals that balanced predation risk and feeding opportunities. The predation risk allocation hypothesis predicts that animals should forage more in low- than in high-risk situations and that this difference should increase with an increasing attack ratio (i.e. difference between low- and high-risk situations) and proportion of time spent at high risk. To test these predictions we conducted a field test using bank voles (Clethrionomys glareolus) as a prey and the least weasel (Mustela nivalis nivalis) as a predator. The temporal pattern and intensity of predation risk were manipulated in large outdoor enclosures and the foraging effort and patch use of voles were measured by recording giving-up densities. We did not observe any variation in feeding effort due to changes in the level of risk or the proportion of time spent under high-risk conditions. The only significant effect was found when the attack ratio was altered: the foraging effort of voles was higher in the treatment with a low attack ratio than in the treatment with a high attack ratio. Thus the results did not support the predation risk allocation hypothesis and we question the applicability of the hypothesis to our study system. We argue that the deviation between the observed pattern of feeding behaviour of bank voles and that predicted by the predation risk allocation hypothesis was mostly due to the inability of voles to accurately assess the changes in the level of risk. However, we also emphasise the difficulties of testing hypotheses under outdoor conditions and with mammals capable of flexible behavioural patterns.  相似文献   

6.
在自然生态系统中,不同营养级物种可通过特征介导间接效应对生态系统的稳定及种群产生深刻的影响。但目前有关特征介导间接效应的实验研究多见于无脊椎动物、鱼类和两爬类。本研究以根田鼠为对象,在野外围栏内建立预防捕食者和未预防捕食者两种实验处理种群,并通过采用麦克马斯特法测定两种处理种群实验个体肠道寄生物感染种类及感染率和感染强度,采用PHA(phytohemagglutinin)反应和白细胞分类计数测定不同处理种群实验个体免疫能力,以分析捕食风险对根田鼠肠道寄生物的感染效应。结果表明,未预防捕食者处理组根田鼠PHA反应、白细胞计数和淋巴细胞计数较预防捕食者处理组实验个体显著降低,而球虫 E. wenrichi 的感染率和感染强度则显著增加,但绦虫和线虫以及其他3种球虫的感染率和感染强度无显著差异。结果表明,捕食者可通过介导猎物免疫力特征而间接影响猎物肠道寄生物的感染,验证了本项提出的捕食风险可通过降低根田鼠的免疫能力而增加其肠道寄生物感染的假设。  相似文献   

7.
The exploitation of predator signals by potential prey is well researched, but relatively little is known about how predators exploit chemical cues (either deliberate signals or waste by-products) produced by their prey. In Finland, the urine of some small rodents (Microtus spp. and Clethrionomys spp.) is reflective in the ultraviolet range of wavelengths, and diurnal raptors with ultraviolet vision use these urine marks to track their rodent prey. This study examines the potential for such a phenomenon in Australian systems by studying the ultraviolet properties of urine from 13 native and introduced mammal species that are variously preyed upon by raptors. Urine from all 13 species displayed various levels of ultraviolet absorbance in their urine and fluorescence in the ultraviolet range. However, no signs of ultraviolet hyper-reflectance were detected, suggesting that the urine of European voles have unique ultraviolet properties. Ultraviolet-sensitive predators in Australia may be able to distinguish between species based on variation in the ultraviolet absorbance of their urine, but ultraviolet properties did not differ between prey and non-prey species, nor marsupial and placental groups. Moreover, because many natural surfaces are ultraviolet absorbing, it is unlikely that raptors could rely upon the ultraviolet properties of urine to target key prey species.  相似文献   

8.
Predators may control the impact of herbivores on their plant resources by 1) decreasing herbivore numbers, 2) imposing predation risk affecting foraging behavior. The goal of the present study was to examine the effects of a predator and auditory cues indicating its presence on the rate of tree seedling (Acer rubrum, Betula lenta) consumption by meadow voles (Microtus pennsylvanicus). The first of our experiments involved introduction of a stoat (Mustela erminea) into an enclosed vole population and the second a playback of recordings of vole distress calls, movements of a stoat and its vocalizations. In both experiments we manipulated vegetation cover and the availability of food next to the experimental seedlings to assess the effects of microhabitat under the different risk situations. The results of the first unreplicated experiment suggested an increased rate of seedling predation in the presence of the stoat. Consistent with these results, the playback of predator sounds in the second replicated experiment caused an increased rate of seedling predation compared to control plots with no recordings. A mowed circle around a seedling station, representing increased risk of predation on the voles, decreased seedling consumption. This effect was modest in the playback treatment. We suggest the results to be due to displacement behavior by the voles exposed to prolonged risk and conflicting demands of foraging and avoiding predators. Alternatively, as suggested by the model of Lima and Bednekoff, prolonged risk of predation forced the voles to decrease their levels of vigilance during low‐risk playback breaks. The modest inhibitory effect of cover removal on seedling predation in the playback treatment is consistent with this interpretation. The results confirm recent evidence for trophic cascades mediated by behavioral interactions between predator and prey. They are novel in suggesting that the presence of predation risk can increase the inhibitory effects of consumers on their resources.  相似文献   

9.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

10.
Wolff  Jerry O. 《Behavioral ecology》2004,15(2):286-289
Predators use scent to locate their prey, and prey animals oftenalter their behavior in response to predation risk. I testedthe hypothesis that voles would decrease their frequency ofscent marking in response to predation risk. I conducted trialsin which prairie voles, Microtus ochrogaster, and woodland voles,M. pinetorum, were allowed to scent mark ceramic tiles placedin their runways in the field. The tiles were subjected to oneof three treatments: scented with odor from mink, Mustela vison(a rodent predator); rabbit, Oryctolagus cuniculus (a nonpredatormammal control); and no odor (control). No significant differenceswere found in the frequency of scent marking in response tothe three treatments for either species. To validate that volesdid not decrease their scent marking in response to predationrisk, I brought male prairie voles from the field site intothe laboratory and allowed them to scent mark white paper substratetreated with mink odor, rabbit odor, or no odor. No significantdifferences were found in the frequency of scent marks in responseto the three treatments. These results differ from what waspredicted based on laboratory studies with other species ofrodents that show avoidance, reproductive suppression, decreasedactivity, and reduced scent marking in response to odors ofpredators. Voles appear to scent mark different substrates andunder a wide variety of social and environmental situations,and this is not influenced by the presence of odor from a predator.  相似文献   

11.
Interspecific competition is usually understood as different species competing directly with each other for limited resources. However, predators can alter such competitive interactions substantially. Predation can promote the coexistence of species in a situation where it would otherwise be impossible, for example if a tradeoff between the competitive abilities and predation resistance of the prey species exists. The field vole Microtus agrestis and the sibling vole M. rossiaemeridionalis are sympatric grassland species, which compete for the same resources. At the population level sibling voles are suggested to be superior competitors to field voles, yet more vulnerable to predation. We tested the effects of predation on the two species in 0.5 ha outdoor enclosures by exposing vole populations to radio-collared freely-hunting least weasels Mustela nivalis nivalis for three weeks. Lethal and non-lethal impacts of predation limited population densities of both species during and after the experimental period, but the effect was more pronounced in sibling voles in which population densities decreased markedly during the treatment period and even after that. Field vole population densities remained stable under weasel predation, while densities increased in controls. Survival in both species was lower in treatment populations compared to controls, but the effect tended to be more pronounced in sibling voles and in females of both species. The average mass of adults in both species declined in the treatment populations. These results suggest that predation by least weasels can limit vole populations locally, even during favourable summer conditions, and have extended negative effects on the dynamics of vole populations. In addition, predation alleviated interspecific competition between the vole species and is, therefore, a potential factor enabling the coexistence of them.  相似文献   

12.
S. Halle 《Oecologia》1988,75(3):451-455
Summary Pellets of diurnal avian predators (mainly kestrels and buzzards) were analysed to prove the hypothesis of selective predation for a mixed population of small rodents. It was found that voles heavily predominated as prey over mice (up to a factor of 19 during winter). Within both prey species, predation focussed on distinct parts of the populations: during winter the heaviest specimens were preferentially captured, during summer the subadults were in an exposed position. In the voles, an additional predominance of males occurred (up to a factor of 5.2 during summer). These findings verify the assumption of Errington (1956) that speciments of a low social rank are susceptible to the highest risk of predation.  相似文献   

13.
Summary In northern Fennoscandia, microtine rodent populations fluctuate cyclically. The environment of an individual vole can be considered to be predictable when the risks of predation and intra- and interspecific competition change with the cycle, such that both are high during the population highs of voles. The risk of predation is also high during the vole crash. After the crash, the vole population is characterized by low intra- and interspecific competition and low predation pressure. The main predators affecting voles during the crash are the small mustelids, least weasel and stoat. The density of these specialist predators declines drastically during the winter after the vole crash. We studied experimentally the impact of the perceived presence of stoats on the breeding and mating behaviour of voles. In a series of breeding experiments with bank voles,Clethrionomys glareolus, both old and young females suppressed breeding when exposed to the odour of stoats,Mustela erminea. The weights of females decreased in both experimental and control groups, but more among the voles under odour exposition. It seems that females actively avoided copulations under high predation risk and that breeding suppression is mediated by a change in female mating behaviour. There was no change in male behaviour or physical condition between the experimental and control treatments. An alternative mechanism for the observed breeding suppression could be the one caused by decreased feeding in females mediated with low energy intake which does not allow breeding. Regardless of its mechanism, delay of breeding should increase the probability of non-breeding females to survive to the next breeding season. The females surviving the crash should gain a strong selective advantage in a predator-free environment of the subsequent breeding season, which could explain the adaptive function of this antipredatory strategy.  相似文献   

14.
Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes ), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus ). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40'N, 15°25'E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns.  相似文献   

15.
The mere presence of predators (i.e., predation risk) can alter consumer physiology by restricting food intake and inducing stress, which can ultimately affect prey‐mediated ecosystem processes such as nutrient cycling. However, many environmental factors, including conspecific density, can mediate the perception of risk by prey. Prey conspecific density has been defined as a fundamental feature that modulates perceived risk. In this study, we tested the effects of predation risk on prey nutrient stoichiometry (body and excretion). Using a constant predation risk, we also tested the effects of varying conspecific densities on prey responses to predation risk. To answer these questions, we conducted a mesocosm experiment using caged predators (Belostoma sp.), and small bullfrog tadpoles (Lithobates catesbeianus) as prey. We found that L. catesbeianus tadpoles adjust their body nutrient stoichiometry in response to predation risk, which is affected by conspecific density. We also found that the prey exhibited strong morphological responses to predation risk (i.e., an increase in tail muscle mass), which were positively correlated to body nitrogen content. Thus, we pose the notion that in risky situations, adaptive phenotypic responses rather than behavioral ones might partially explain why prey might have a higher nitrogen content under predation risk. In addition, the interactive roles of conspecific density and predation risk, which might result in reduced perceived risk and physiological restrictions in prey, also affected how prey stoichiometry responded to the fear of predation.  相似文献   

16.
Understanding how animals weigh habitat features, exposure to predators and access to resources is important to determining their life history and distribution across the landscape. For example, when predators accumulate in structurally complex habitats, they face an environment with different competitive interactions, foraging opportunities and predatory risks. The wolf spider Pardosa milvina inhabits the soil surface of highly disturbed habitats such as agricultural fields throughout eastern North America. Pardosa displays effective antipredator behavior in the presence of chemical cues produced by a larger coexisting wolf spider, Hogna helluo . We used those cues to simulate predation risk in laboratory and field experiments designed to test the effects of habitat substrate and predation risk on site selection and prey consumption of Pardosa . In general, Pardosa preferred more complex substrates over bare dirt but those preferences were eliminated or reversed when cues from Hogna were present. Feeding trials revealed that substrate alone had few effects on Pardosa prey consumption, which we measured by documenting the change in the abdomen width. Although the presence of Hogna cues reduced prey consumption overall in field feeding trials, the negative effect of predation risk on prey consumption was only observed in grass and bare dirt substrates in the laboratory. We also found that prey capture was negatively affected by habitat complexity for both spider species but that same complexity offered Pardosa protection from predation by Hogna. This study provides insight into how two predator species interact to balance site selection and feeding in order to avoid predation. Shifts in foraging and distributional patterns of predators can have profound implications for their role in the food web.  相似文献   

17.
It is well known that young, small predator stages are vulnerable to predation by conspecifics, intra-guild competitors or hyperpredators. It is less known that prey can also kill vulnerable predator stages that present no danger to the prey. Since adult predators are expected to avoid places where their offspring would run a high predation risk, this opens the way for potential prey to deter dangerous predator stages by killing vulnerable predator stages. We present an example of such a complex predator–prey interaction. We show that (1) the vulnerable stage of an omnivorous arthropod prey discriminates between eggs of a harmless predator species and eggs of a dangerous species, killing more eggs of the latter; (2) prey suffer a minor predation risk from newly hatched predators; (3) adult predators avoid ovipositing near killed predator eggs, and (4) vulnerable prey near killed predator eggs experience an almost fourfold reduction of predation. Hence, by attacking the vulnerable stage of their predator, prey deter adult predators and thus reduce their own predation risk. This provides a novel explanation for the killing of vulnerable stages of predators by prey and adds a new dimension to anti-predator behaviour.  相似文献   

18.
Individuals are at risk when communicating because conspicuous signals attract both conspecifics and eavesdropping predators. This predation cost of communicating has typically been attributed to signalling individuals because of their conspicuous role, and is a core concept within sexual selection and communication ecology. But, if predators are attracted to signals, then receivers, both intended or otherwise, may also find themselves at risk of predation. Here, we review the theoretical basis and empirical evidence that receiving also carries a risk of predation. We distinguish between the risks of receiving and responding to signals, and we argue that receivers of signals that are long lived, are highly predictable in time or place and/or cannot be received quickly are likely to be at greater risk of predation compared to receivers of signals without these properties. We review recent empirical evidence from a variety of taxa that supports the hypothesis that receivers (including heterospecific prey) are aware of these risks and that they modify their behaviour to balance the risks against the benefits of receiving under predation threat. We also discuss the wider implications of risky receiving for receiving and signalling behaviour in prey, as well as for the prey's predators.  相似文献   

19.
Plant-associated micro-organisms such as mycotoxin-producing endophytes commonly have direct negative effects on herbivores. These effects may be carried over to natural enemies of the herbivores, but this has been rarely explored. We examined how feeding on Neotyphodium endophyte infected (E+) and endophyte free (E−) meadow ryegrass (Scherodonus pratensis) affects body mass, population size and mobility of sibling voles (Microtus levis), and whether the diet mediates the vulnerability of voles to least weasel (Mustela nivalis nivalis) predation. Because least weasels are known to be olfactory hunters, we also examined whether they are able to distinguish olfactory cues of voles fed on E+ and E− diets. Neither body mass of voles nor population size differed between diets. However, contrary to our prediction, least weasels preyed more often on voles fed with E− grass than on voles fed with E+ grass. The mobility of voles fed on E+ grass was reduced compared to voles fed on E− grass, but this effect was unrelated to risk of predation. Least weasels appeared unable to distinguish between excrement odours of voles between the two treatments. Our results suggest that consumption of endophytic grass is not directly deleterious to sibling voles. What''s more, consumption of endophytes appears to be advantageous to voles by reducing risk of mammalian predation. Our study is thus the first to demonstrate an effect of plant-associated microbial symbionts on herbivore-predator interactions in vertebrate communities.  相似文献   

20.
Predators will often respond to reductions in preferred prey by switching to alternative prey resources. However, this may not apply to all alternative prey groups in patchy landscapes. We investigated the demographic and aggregative numerical and functional responses of Common Buzzards Buteo buteo in relation to variations in prey abundance on a moor managed for Red Grouse Lagopus lagopus scotica in south‐west Scotland over three consecutive breeding and non‐breeding seasons. We predicted that predation of Red Grouse by Buzzards would increase when abundance of their preferred Field Vole Microtus agrestis prey declined. As vole abundance fluctuated, Buzzards responded functionally by eating voles in relation to their abundance, but they did not respond demographically in terms of either breeding success or density. During a vole crash year, Buzzards selected a wider range of prey typical of enclosed farmland habitats found on the moorland edge but fewer Grouse from the heather moorland. During a vole peak year, prey remains suggested a linear relationship between Grouse density and the number of Grouse eaten (a Type 1 functional response), which was not evident in either intermediate or vole crash years. Buzzard foraging intensity varied between years as vole abundance fluctuated, and foraging intensity declined with increasing heather cover. Our findings did not support the prediction that predation of Red Grouse would increase when vole abundance was low. Instead, they suggest that Buzzards predated Grouse incidentally while hunting for voles, which may increase when vole abundances are high through promoting foraging in heather moorland habitats where Grouse are more numerous. Our results suggest that declines in their main prey may not result in increased predation of all alternative prey groups when predators inhabit patchy landscapes. We suggest that when investigating predator diet and impacts on prey, knowledge of all resources and habitats that are available to predators is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号