首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The periplasmic protein CusF, as a part of the CusCFBA efflux complex, plays a role in resistance to elevated levels of copper and silver in Escherichia coli. Although homologues have been identified in other Gram-negative bacteria, the substrate of CusF and its precise role in metal resistance have not been described. Here, isothermal titration calorimetry (ITC) was used to demonstrate that CusF binds with high affinity to both Cu(I) and Ag(I) but not Cu(II). The affinity of CusF for Ag(I) was higher than that for Cu(I), which could reflect more efficient detoxification of Ag(I) given the lack of a cellular need for Ag(I). The chemical shifts in the nuclear magnetic resonance (NMR) spectra of CusF-Ag(I) as compared to apo-CusF show that the region of CusF most affected by Ag(I) binding encompasses three absolutely conserved residues: H36, M47, and M49. This suggests that these residues may play a role in Ag(I) coordination. The NMR spectra of CusF in the presence of Cu(II) do not indicate specific binding, which is in agreement with the ITC data. We conclude that Cu(I) and Ag(I) are the likely physiological substrates.  相似文献   

2.
Cox17 is a 69-residue cysteine-rich, copper-binding protein that has been implicated in the delivery of copper to the Cu(A) and Cu(B) centers of cytochrome c oxidase via the copper-binding proteins Sco1 and Cox11, respectively. According to isothermal titration calorimetry experiments, fully reduced Cox17 binds one Cu(I) ion with a K(a) of (6.15 +/- 5.83) x 10(6) M(-1). The solution structures of both apo and Cu(I)-loaded Cox17 reveal two alpha helices preceded by an extensive, unstructured N-terminal region. This region is reminiscent of intrinsically unfolded proteins. The two structures are very similar overall with residues in the copper-binding region becoming more ordered in Cu(I)-loaded Cox17. Based on the NMR data, the Cu(I) ion has been modeled as two-coordinate with ligation by conserved residues Cys(23) and Cys(26). This site is similar to those observed for the Atx1 family of copper chaperones and is consistent with reported mutagenesis studies. A number of conserved, positively charged residues may interact with complementary surfaces on Sco1 and Cox11, facilitating docking and copper transfer. Taken together, these data suggest that Cox17 is not only well suited to a copper chaperone function but is specifically designed to interact with two different target proteins.  相似文献   

3.
Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A|| = 20 mT). Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties.  相似文献   

4.
Babu CR  Volkman BF  Bullerjahn GS 《Biochemistry》1999,38(16):4988-4995
The solution structure of a divergent plastocyanin (PC) from the photosynthetic prokaryote Prochlorothrix hollandica was determined by homonuclear 1H NMR spectroscopy. Nineteen structures were calculated from 1222 distance restraints, yielding a family of structures having an average rmsd of 0.42 +/- 0.08 A for backbone atoms and 0.71 +/- 0.07 A for heavy atoms to the mean structure. No distance constraint was violated by more than 0.26 A in the structure family. Despite the low number of conserved residues shared with other PC homologues, the overall folding pattern of P. hollandica PC is similar to other PCs, in that the protein forms a two-sheet beta-barrel tertiary structure. The greatest variability among the backbone structures is seen in the loop region from residues 47-60. The differences seen in the P. hollandica PC homologue likely arise due to a small deletion of 2-4 residues compared to the PC consensus; this yields a less extended loop containing a short alpha-helix from residues Ala52-Leu55. Additionally, the protein has an altered hydrophobic patch thought to be important in binding reaction partners. Whereas the backbone structure is very similar within the loops of the hydrophobic region, the presence of two unique residues (Tyr12 and Pro14) yields a structurally different hydrophobic surface likely important in binding P. hollandica Photosystem I.  相似文献   

5.
Cytochrome c oxidase assembly process involves many accessory proteins including Cox11, which is a copper-binding protein required for Cu incorporation into the Cu(B) site of cytochrome c oxidase. In a genome wide search, a number of Cox11 homologs are found in all of the eukaryotes with complete genomes and in several Gram-negative bacteria. All of them possess a highly homologous soluble domain and contain an N-terminal fragment that anchors the protein to the membrane. An anchor-free construct of 164 amino acids was obtained from Sinorhizobium meliloti, and the first structure of this class of proteins is reported here. The apoform has an immunoglobulin-like fold with a novel type of beta-strand organization. The copper binding motif composed of two highly conserved cysteines is located on one side of the beta-barrel structure. The apoprotein is monomeric in the presence of dithiothreitol, whereas it dimerizes in the absence of the reductant. When copper(I) binds, NMR and extended x-ray absorption fine structure (EXAFS) data indicate a dimeric protein state with two thiolates bridging two copper(I) ions. The present results advance the knowledge on the poorly understood molecular aspects of cytochrome c oxidase assembly.  相似文献   

6.
Cox11 is a protein essential for respiratory growth and has been implicated in the assembly of the Cu(B) site of cytochrome c oxidase. In the present study, we demonstrate that Cox11 is a copper-binding protein. The soluble C-terminal domain of Cox11 forms a dimer that coordinates one Cu(I) per monomer via three thiolate ligands. The two Cu(I) ions in the dimer exist in a binuclear cluster and appear to be ligated by three conserved Cys residues. Mutation of any of these Cys residues reduces Cu(I) binding and confers respiratory incompetence. Cytochrome c oxidase activity is reduced in these mutants. Thus, the residues important for Cu(I) binding correlate with in vivo function, suggesting that Cu(I) binding is important in Cox11 function.  相似文献   

7.
The beta-amyloid precursor protein (beta-APP) contains a copper-binding site localized between amino acids 135 and 156 (beta-APP(135-156)). We have employed synthetic beta-APP peptides to characterize their capacities to reduce Cu(II) to Cu(I). Analogues of the wild-type beta-APP(135-156) peptide, containing specific amino acid substitutions, were used to establish which residues are specifically involved in the reduction of copper by beta-APP(135-156). We report here that beta-APP's copper-binding domain reduced Cu(II) to Cu(I). The single-mutant beta-APP(His147-->Ala) and the double-mutant beta-APP(His147-->Ala/His149-->Ala) showed a small decrease in copper reduction in relation to the wild-type peptide and the beta-APP(Cys144-->Ser) mutation abolished it, suggesting that Cys144 is the key amino acid in the oxidoreduction reaction. Our results confirm that soluble beta-APP is involved in the reduction of Cu(II) to Cu(I).  相似文献   

8.
The binding of 64Cu to the water-soluble form of dopamine beta-monooxygenase from bovine adrenal medulla was studied in reconstitution and exchange experiments using high-performance size-exclusion gel chromatography. The reconstitution experiments provide evidence for a specific binding of four copper atoms/enzyme tetramer using either Cu(I) or Cu(II), but some weaker copper-binding sites were observed in the presence of a large excess of copper. The exchanges of both Cu(I) and Cu(II) in this protein are so rapid that exact half-lives for the exchange reactions can not be obtained by the present method. The results indicate, however, that the half-life for the exchange of the enzyme-bound copper in the holoenzyme with a twofold excess of 64Cu(II) at pH 6.1 was about 1 min, whereas the exchange of Cu(I) measured at similar conditions with ascorbate present, was complete in 1 min. This is by far the most rapid exchange reported for any copper-protein, and the results points to a unique copper-binding site in this enzyme.  相似文献   

9.
The anthranilate phosphoribosyltransferase from Sulfolobus solfataricus (ssAnPRT) forms a homodimer with a hydrophobic subunit interface. To elucidate the role of oligomerisation for catalytic activity and thermal stability of the enzyme, we loosened the dimer by replacing two apolar interface residues with negatively charged residues (mutations I36E and M47D). The purified double mutant I36E+M47D formed a monomer with wild-type catalytic activity but reduced thermal stability. The single mutants I36E and M47D were present in a monomer-dimer equilibrium with dissociation constants of about 1 μM and 20 μM, respectively, which were calculated from the concentration-dependence of their heat inactivation kinetics. The monomeric form of M47D, which is populated at low subunit concentrations, was as thermolabile as monomeric I36E+M47D. Likewise, the dimeric form of I36E, which was populated at high subunit concentrations, was as thermostable as dimeric wild-type ssAnPRT. These findings show that the increased stability of wild-type ssAnPRT compared to the I36E+M47D double mutant is not caused by the amino acid exchanges per se but by the higher intrinsic stability of the dimer compared to the monomer. In accordance with the negligible effect of the mutations on catalytic activity and stability, the X-ray structure of M47D contains only minor local perturbations at the dimer interface. We conclude that the monomeric double mutant resembles the individual wild-type subunits, and that ssAnPRT is a dimer for stability but not for activity reasons.  相似文献   

10.
The backbone assignment of the copper-zinc superoxide dismutase amyotrophic lateral sclerosis G93A mutant was performed on an (15)N-enriched protein sample. (15)N R(1), R(2), and R(1)(rho) and (15)N-(1)H NOE experiments were then carried out at 600 MHz on G93A Cu(2)Zn(2)SOD and the values compared to the dynamics data for the "wild-type" protein. In addition, (15)N and (1)H chemical shift comparisons between wild-type Cu(2)Zn(2)SOD and its G93A mutant were also made. G93A exhibits a higher mobility than wild-type Cu(2)Zn(2)SOD, particularly in loops III and V, on a time scale faster than the rate of protein tumbling. There are also distinct chemical shift and NOE differences in residues 35-42 and 92-95, which comprise these loops. These two regions of Cu(2)Zn(2)SOD form the end of the beta-barrel termed the "beta-barrel plug" [Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C. (1982) J. Mol. Biol. 160, 181-217]. The increased mobility and reduction of the number of observed NOEs in this region indicate an opening of the beta-barrel that may lead to amyloid fibrillogenesis. Alternatively, a motor neuron-specific substrate may bind this region of the protein, leading to deleterious modifications and/or reactions.  相似文献   

11.
Nitrosocyanin (NC), a soluble, red Cu protein isolated from the ammonia-oxidizing autotrophic bacterium Nitrosomonas europaea, is shown to be a homo-oligomer of 12 kDa Cu-containing monomers. Oligonucleotides based on the amino acid sequence of the N-terminus and of the C-terminal tryptic peptide were used to sequence the gene by PCR. The translated protein sequence was significantly homologous with the mononuclear cupredoxins such as plastocyanin, azurin, or rusticyanin, the type 1 copper-binding region of nitrite reductase, and the binuclear CuA binding region of N(2)O reductase or cytochrome oxidase. The gene for NC contains a leader sequence indicating a periplasmic location. Optical bands for the red Cu center at 280, 390, 500, and 720 nm have extinction coefficients of 13.9, 7.0, 2.2, and 0.9 mM(-1), respectively. The reduction potential of NC (85 mV vs SHE) is much lower than those for known cupredoxins. Sequence alignments with homologous blue copper proteins suggested copper ligation by Cys95, His98, His103, and Glu60. Ligation by these residues (and a water), a trimeric protein structure, and a cupredoxin beta-barrel fold have been established by X-ray crystallography of the protein [Lieberman, R. L., Arciero, D. M., Hooper, A. B., and Rosenzweig, A. C. (2001) Biochemistry 40, 5674-5681]. EPR spectra of the red copper center indicated a Cu(II) species with a g(parallel) of 2.25 and an A(parallel) of 13.8 mT (144 x 10(-4) cm(-1)), typical of Cu in a type 2 copper environment. NC is the first example of a type 2 copper center in a cupredoxin fold. The open coordination site and type 2 copper suggest a possible catalytic rather than electron transfer function.  相似文献   

12.
Wilson disease is an autosomal disorder of copper transport caused by mutations in the ATP7B gene encoding a copper-transporting P-type ATPase. The Long Evans Cinnamon (LEC) rat is an established animal model for Wilson disease. We have used structural homology modelling of the N-terminal copper-binding region of the rat atp7b protein (rCBD) to reveal the presence of a domain, the fourth domain (rD4), which was previously thought to be missing from rCBD. Although the CXXC motif is absent from rD4, the overall fold is preserved. Using a wide range of techniques, rCBD is shown to undergo metal-induced secondary and tertiary structural changes similar to WCBD. Competition 65Zn(II)-blot experiments with rCBD demonstrate a binding cooperativity unique to Cu(I). Far-UV circular dichroism (CD) spectra suggest significant secondary structural transformation occurring when 2-3 molar equivalents of Cu(I) is added. Near-UV CD spectra, which indicate tertiary structural transformations, show a proportional decrease in rCBD disulfide bonds upon the incremental addition of Cu(I), and a maximum 5:1 Cu(I) to protein ratio. The similarity of these results to those obtained for the Wilson disease N-terminal copper-binding region (WCBD), which has six copper-binding domains, suggests that the metal-dependent conformational changes observed in both proteins may be largely determined by the protein-protein interactions taking place between the heavy metal-associated (HMA) domains, and remain largely unaffected by the absence of one of the six CXXC copper-binding sites.  相似文献   

13.
The copK gene is localized on the pMOL30 plasmid of Cupriavidus metallidurans CH34 within the complex cop cluster of genes, for which 21 genes have been identified. The expression of the corresponding periplasmic CopK protein is strongly upregulated in the presence of copper, leading to a high periplasmic accumulation. The structure and metal-binding properties of CopK were investigated by NMR and mass spectrometry. The protein is dimeric in the apo state with a dissociation constant in the range of 10- 5 M estimated from analytical ultracentrifugation. Mass spectrometry revealed that CopK has two high-affinity Cu(I)-binding sites per monomer with different Cu(I) affinities. Binding of Cu(II) was observed but appeared to be non-specific. The solution structure of apo-CopK revealed an all-β fold formed of two β-sheets in perpendicular orientation with an unstructured C-terminal tail. The dimer interface is formed by the surface of the C-terminal β-sheet. Binding of the first Cu(I)-ion induces a major structural modification involving dissociation of the dimeric apo-protein. Backbone chemical shifts determined for the 1Cu(I)-bound form confirm the conservation of the N-terminal β-sheet, while the last strand of the C-terminal sheet appears in slow conformational exchange. We hypothesize that the partial disruption of the C-terminal β-sheet is related to dimer dissociation. NH-exchange data acquired on the apo-protein are consistent with a lower thermodynamic stability of the C-terminal sheet. CopK contains seven methionine residues, five of which appear highly conserved. Chemical shift data suggest implication of two or three methionines (Met54, Met38, Met28) in the first Cu(I) site. Addition of a second Cu(I) ion further increases protein plasticity. Comparison of the structural and metal-binding properties of CopK with other periplasmic copper-binding proteins reveals two conserved features within these functionally related proteins: the all-β fold and the methionine-rich Cu(I)-binding site.  相似文献   

14.
Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using 1H and 15N heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)2Cys pair, is located on an exposed loop. 1H-15N HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues.  相似文献   

15.
The copper metallochaperone Cox17 is proposed to shuttle Cu(I) ions to the mitochondrion for the assembly of cytochrome c oxidase. The Cu(I) ions are liganded by cysteinyl thiolates. Mutational analysis on the yeast Cox17 reveals three of the seven cysteinyl residues to be critical for Cox17 function, and these three residues are present in a Cys-Cys-Xaa-Cys sequence motif. Single substitution of any of these three cysteines with serines results in a nonfunctional cytochrome oxidase complex. Cells harboring such a mutation fail to grow on nonfermentable carbon sources and have no cytochrome c oxidase activity in isolated mitochondria. Wild-type Cox17 purified as untagged protein binds three Cu(I) ions/molecule. Mutant proteins lacking only one of these critical Cys residues retain the ability to bind three Cu(I) ions and are imported within the mitochondria. In contrast, Cox17 molecules with a double Cys --> Ser mutation exhibit no Cu(I) binding but are still localized to the mitochondria. Thus, mitochondrial uptake of Cox17 is not restricted to the Cu(I) conformer of Cox17. COX17 was originally cloned by virtue of complementation of a mutant containing a nonfunctional Cys --> Tyr substitution at codon 57. The mutant C57Y Cox17 fails to accumulate within the mitochondria but retains the ability to bind three Cu(I) ions. A C57S Cox17 variant is functional, and a quadruple Cox17 mutant with C16S/C36S/C47S/C57S substitutions binds three Cu(I) ions. Thus, only three cysteinyl residues are important for the ligation of three Cu(I) ions. A novel mode of Cu(I) binding is predicted.  相似文献   

16.
Detailed analysis of the CuZn superoxide dismutase (SOD) structure provides new results concerning the significance and molecular basis for sequence conservation, intron-exon boundary locations, gene duplication, and Greek key beta-barrel evolution. Using 15 aligned sequences, including a new mouse sequence, specific roles have been assigned to all 23 invariant residues and additional residues exhibiting functional equivalence. Sequence invariance is dominated by 15 residues that form the active site stereochemistry, supporting a primary biological function of superoxide dismutation. The beta-strands have no sequence insertions and deletions, whereas insertions occur within the loops connecting the beta-strands and at both termini. Thus, the beta-barrel with only four invariant residues is apparently over-determined, but dependent on multiple cooperative side chain interactions. The regions encoded by exon I, a proposed nucleation site for protein folding, and exon III, the Zn loop involved in stability and catalysis, are the major structural subdomains not included in the internal twofold axis of symmetry passing near the catalytic Cu ion. This provides strong confirmatory evidence for gene evolution by duplication and fusion followed by the addition of these two exons. The proposed evolutionary pathway explains the structural versatility of the Greek key beta-barrel through functional specialization and subdomain insertions in new loop connections, and provides a rationale for the size of the present day enzyme.  相似文献   

17.
Prion diseases are a class of fatal neurodegenerative disorders characterized by brain spongiosis, synaptic degeneration, microglia and astrocytes activation, neuronal loss and altered redox control. These maladies can be sporadic, iatrogenic and genetic. The etiological agent is the prion, a misfolded form of the cellular prion protein, PrP(C). PrP(C) interacts with metal ions, in particular copper and zinc, through the octarepeat and non-octarepeat binding sites. The physiological implication of this interaction is still unclear, as is the role of metals in the conversion. Since prion diseases present metal dyshomeostasis and increased oxidative stress, we described the copper-binding site located in the human C-terminal domain of PrP-HuPrP(90-231), both in the wild-type protein and in the protein carrying the pathological mutation Q212P. We used the synchrotron-based X-ray absorption fine structure technique to study the Cu(II) and Cu(I) coordination geometries in the mutant, and we compared them with those obtained using the wild-type protein. By analyzing the extended X-ray absorption fine structure and the X-ray absorption near-edge structure, we highlighted changes in copper coordination induced by the point mutation Q212P in both oxidation states. While in the wild-type protein the copper-binding site has the same structure for both Cu(II) and Cu(I), in the mutant the coordination site changes drastically from the oxidized to the reduced form of the copper ion. Copper-binding sites in the mutant resemble those obtained using peptides, confirming the loss of short- and long-range interactions. These changes probably cause alterations in copper homeostasis and, consequently, in redox control.  相似文献   

18.
N epsilon-[2H6]Isopropyllysyl-beta-lactoglobulin was prepared by reductive alkylation of beta-lactoglobulin with [2H6]acetone and NaBH4 to provide a 2H (NMR) probe for the study of lysine involvement in lipid-protein interactions. Amino acid analysis showed 80% of the protein's 15 lysine residues to be labeled. Unmodified lysine residues were located through peptide maps produced from CNBr, tryptic, and chymotryptic digests of the labeled protein. Lys47 was not modified; Lys135,138,141, located along an amphipathic helical rod, were each partially unmodified. All other lysine residues were at least 90% modified. Average correlation times calculated from 2H NMR spectra were 20 and 320 ps for 8.7 and 3.3 residues, respectively, in 6 M guanidine hydrochloride; in nondenaturing solution, values of 70 and 320 ps were obtained for 6.5 and 3.2 residues, respectively, with the remaining 2.3 modified residues not observed, suggesting that side chains of lysine residues in unordered or flexible regions were more mobile than those in stable periodic structures. 2H NMR spectra of the protein complexed with dipalmitoylphosphatidylcholine confirmed the extrinsic membrane protein type behavior of beta-lactoglobulin previously reported from 31P NMR studies of the phospholipids complexed with beta-lactoglobulin. Although no physiological function has yet been identified, comparison of these results with the X-ray structure [Papiz et al. (1986) Nature (London) 324, 383-385] supports the hypothesis that residues not accessible for modification may help to stabilize the cone-shaped beta-barrel thought to contain binding sites for small lipid-soluble molecules.  相似文献   

19.
J Skolnick  A Kolinski  R Yaris 《Biopolymers》1989,28(6):1059-1095
In the context of dynamic Monte Carlo simulations on a model protein confined to a tetrahedral lattice, the interplay of protein size and tertiary structure, and the requirements for an all-or-none transition to a unique native state, are investigated. Small model proteins having a primary sequence consisting of a central bend neutral region flanked by two tails having an alternating hydrophobic/hydrophilic pattern of residues are seen to undergo a continuous transition to a beta-hairpin collapsed state. On increasing the length of the tails, the beta-hairpin structural motif is found to be in equilibrium with a four-member beta-barrel. Further increase of the tail length results in the shift of the structural equilibrium to the four-member beta-barrel. The random coil to beta-barrel transition is of an all-or-none character, but while the central turn is always the desired native bend, the location of the turns involving the two external strands is variable. That is, beta-barrels having the external stands that are two residues out of register are also observed in the transition region. Introduction into the primary sequence of two additional regions that are at the very least neutral toward turn formation produces an all-or-none transition to the unique, native, four-member beta-barrel. Various factors that can augment the stability of the native conformation are explored. Overall, these folding simulations strongly indicate that the general rules of globular protein folding are rather robust--namely, one requires a general pattern of hydrophobic/hydrophilic residues that allow the protein to have a well-defined interior and exterior and the presence of regions in the amino acid sequence that at the very least are locally indifferent to turn formation. Since no site-specific interactions between hydrophobic and hydrophilic residues are required to produce a unique four-member beta-barrel, these simulations strongly suggest that site specificity is involved in structural fine-tuning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号