首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Conformations of the synthetic deoxyoligonucleotide 17 base pairs long, which is an OR3 operator of λ phage, and of its 9-b.p. fragment were studied by the circular dichroism method (CD). The regions of stability of the double-stranded state were determined for these duplexes. A comparison of the CD spectra for these oligonucleotides with the CD for a lengthy DNA showed the conformation of these short DNA pieces to belong to the B-family.

A cooperative change in the CD spectra is observed in trifluoroethanol (TFE) solutions at a TFE concentration specific for each oligonucleotide, which is supposed to stem from a B to A transition. The length of the fragment was found to affect the ability for the B-A transition. The transition into the A form is hindered by 13% TFE for the short 9-nucleotide in comparison with the 17-nucleotide. We suggest that this is due to the B form stabilization by terminal base pairs (B-phility of the ends).  相似文献   

2.
The Interaction of the cro protein of lambda phage with a synthetic OR3 operator having 17 base pairs in length and with its 9 bp fragment has been studied using the circular dichroism (CD) method. In both cases, a considerable change in the CD of the samples was found in the region 260-300 nm upon the addition of the cro protein. The stoichiometry obtained by the CD titration was identical for OR3 and its 9 bp fragment: one duplex per dimeric cro. NaCl addition makes the complexes dissociate so that the 9 bp fragment becomes free at [NaCl] greater than 0.2 M while the whole OR3 becomes free at [NaCl] greater than 0.5 M. The CD spectra of both the free duplexes show a typical B-form conservative pattern with a positive CD band (270 nm) and a negative one (250 nm). The specific complexing of both the duplexes results in a substantial CD depression in the positive band. The most pronounced effect occurs at 280 nm. This spectral change is quite distinct from those in the B to A transition and in the non-cooperative winding of the DNA within the B-family of forms. The interaction of the cro protein with the non-operator DNAs, calf thymus DNA and a synthetic 10 bp duplex, reveals no visible CD changes at all. An inference is drawn that the CD change in the specific complexes is mainly due to the induced CD in tyr-26 upon its interaction with a specific base pair in the operator or its fragment, the operator DNA conformation being conserved in a B-like form as a whole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract

The Interaction of the cro protein of λ phage with a synthetic OR3 operator having 17 base pairs in length and with its 9 bp fragment has been studied using the circular dichroism (CD) method. In both cases, a considerable change in the CD of the samples was found in the region 260-300 nm upon the addition of the cro protein. The stoichiometry obtained by the CD titration was identical for OR3 and its 9 bp fragment: one duplex per dimeric cro.

NaCl addition makes the complexes dissociate so that the 9 bp fragment becomes free at [NaCl]>0.2 M while the whole OR3 becomes free at [NaCl]>0.5 M.

The CD spectra of both the free duplexes show a typical B-form conservative pattern with a positive CD band (270 nm) and a negative one (250 nm). The specific complexing of both the duplexes results in a substantial CD depression in the positive band. The most pronounced effect occurs at 280 nm. This spectral change is quite distinct from those in the B to A transition and in the non-cooperative winding of the DNA within the B-family of forms.

The interaction of the cro protein with the non-operator DNAs, calf thymus DNA and a synthetic 10 bp duplex, reveals no visible CD changes at all.

An inference is drawn that the CD change in the specific complexes is mainly due to the induced CD in tyr-26 upon its interaction with a specific base pair in the operator or its fragment, the operator DNA conformation being conserved in a B-like form as a whole. However, some local distortions such as kinks cannot be ruled out on the basis of the CD data.  相似文献   

4.
E L Edwards  R L Ratliff  D M Gray 《Biochemistry》1988,27(14):5166-5174
Circular dichroism (CD) experiments were carried out on a series of DNA oligomers to determine if short internal stretches of protonated cytosine-cytosine (C.C+) base pairs could coexist with adenine-thymine (A.T) base pairs. (1) C.C+ base pairs did form in the absence of A.T base pairs in the individual oligomers d(AACC)5 and d(CCTT)5, as indicated by the appearance of a long-wavelength CD band centered at 282-284 nm, when the pH was lowered to 6 or 5 at 0.5 M Na+. A comparison of measured with calculated spectra showed that d(CCTT)5 at pH 5, 0.5 M Na+, 20 degrees C, likely adopted a structure with a central core of stacked C.C+ base pairs and looped-out thymines. Under the same conditions, it appeared that C.C+ base pairs also formed in d(AACC)5, but with the adenines remaining intrahelical. Each of these oligomers showed a cooperative transition for formation of C.C+ base pairs as the temperature was lowered, with C.C+ base pairs forming at a higher temperature in d(CCTT)5 than in d(AACC)5. A.T base formed in equimolar mixtures of d(AACC)5 plus d(CCTT)5 as monitored by an increase in the negative magnitude of the 250-nm CD band. However, a large increase did not appear at about 285 nm in CD spectra of the mixtures, showing that there were no stacked C.C+ base pairs in the d(AACC)5.d(CCTT)5 duplex even though they formed under the same conditions in the individual strands. Thus, in this duplex, A.T base pairs prevented the formation of neighboring internal C.C+ base pairs. (2) CD measurements were also made of d(A10C4T10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The transitions between left- and right-handed forms of poly(dG-dC).   总被引:14,自引:9,他引:5       下载免费PDF全文
The circular dichroism study of water/trifluoroethanol (TFE) solutions of poly(dG-dC) has revealed the following: The polynucleotide is present as a B form up to a TFE content of 60% (v/v) or less. Then, a cooperative transition into a left-handed Z form occurs. Within the region of 66-78% TFE, a continuous non-cooperative change is going on which can be attributed to an intrafamily transition within the family of Z forms. At last, in the interval of 80-84% TFE, a second cooperative transition, probably, Z - A is realized. Both transitions, Z - A and Z - B, show slow kinetics (10-60 min) while the direct transitions from the A to B form taking less than 10 sec. The length of cooperativity for the B - Z transition, Vo = 25 base pairs was estimated using spermine molecules. Spermine was found to induce the B to Z transition in the (dG-dC) sequences even in the absence of TFE which might be biologically interesting.  相似文献   

6.
Tm curves, CD spectra, and kinetics results of the self-complementary DNA dodecamers d(A6T6), d(A3T3A3T3), d(A2T2A2T2A2T2), d(ATATATATATAT), and d(T6A6) demonstrate that the thermal transitions of these oligomers at low salt concentration involve a hairpin intermediate. At high salt concentrations (greater than 0.1 M Na+) only a duplex to denatured-strand transition appears to occur. The temperature and salt-concentration regions of the transitions are very sequence dependent. Alternating-type AT sequences have a lower duplex stability and a greater tendency to form hairpins than sequences containing more nonalternating AT base pairs. Of the two nonalternating sequences, d(T6A6) is significantly less stable than d(A6T6). Both oligomers have CD curves that are very similar to the unusual CD spectrum of poly(dA).poly(dT). The Raman spectra of these two oligomers are also quite similar, but at low temperature, small intensity differences in two backbone modes and three nucleoside vibrations are obtained. The hairpin to duplex transition for the AT dodecamers was examined by salt-jump kinetics measurements. The transition is faster than transitions for palindromic-sequence oligomers containing terminal GC base pairs. Stopped-flow kinetics studies indicate that the transition is second order and has a relatively low activation energy. The reaction rate increases with increasing ionic strength. These results are consistent with a three-step mechanism for the hairpin to duplex reaction: (i) fraying of the hairpin oligomers' terminal base pairs, (ii) a rate-determining bimolecular step involving formation of a cruciform-type intermediate from two hairpin oligomers with open terminal base pairs, and (iii) base-pair migration and formation in the intermediate to give the duplex.  相似文献   

7.
Sachio Goto 《Biopolymers》1984,23(11):2211-2222
Time-dependent uv absorption and CD spectrum changes in salt-induced conformational B → Z and Z → B transitions of poly(dG? dC) · poly(dG? dC) were measured. This polynucleotide does not convert directly from a right-handed double-helical B form to a left-handed double-helical Z form, but goes through an intermediate, B* form, with the B → B* transition proceeding nearly instantaneously, and then transforms gradually to the Z form. Uv absorption spectra of these B and B* forms are nearly identical, but their CD spectra are quite different. The CD spectrum of the B* form is identical with that obtained for DNA in high salt solutions and is similar to a spectrum which for some time was thought to be a C form. These B and B* forms have the same number of base pairs per turn [Sprecher, C.A., Baase, W.A. & Johnson, Jr., W.C. (1979) Biopolymers 18 , 1009–1019]. Kinetic measurements showed that uv absorption and CD intensities at fixed wavelengths do not change in a simple exponential curve. However, both the uv absorption spectrum change in the B → Z transition and the CD spectrum change in the B* → Z transition, respectively, have isosbestic points. In the B → Z transition, no hyperchromicity can be observed. These results suggest that this B* form unfolding or premelting process is a rate-determining step in the B* → Z transition and makes it easy for the unfolded or premelted polynucleotide to almost immediately fold into the Z form. The double helix does not dissociate into single strands and transforms from the B* form to the Z form point-by-point along the chain in a soliton-like manner of with a small amount of open states in which the bases are unpaired. Also, in the Z → B transition, the polynucleotide does not convert directly from the Z to the B form, but goes through a B*-like form. In this transition, the uv-absorption spectra also have an isosbestic point. The reaction velocity in the Z → B transition is much faster than that in the B → Z transition. Possibly, the positive CD band between 265 and 310 nm in the B form comes from a n-π* transition due to an interaction of the bases with sugarphosphate groups.  相似文献   

8.
The 3,360-base-pair internal direct repeat (IR) in Epstein-Barr virus DNA separates the short and long unique DNA domains. IR has a single BamHI site. The juncture between the short unique domain and IR has been mapped by restriction endonucleases and is less than 2,600 nucleotides before the BamHI site in IR. The junction between IR and the long unique domain has been sequenced and is approximately 650 nucleotides after the BamHI site in IR. Thus, relative to the start of IR at the juncture with the short unique domain, the last repeat is at least 90 base pairs short of being complete. There is homology between the 250-nucleotide fragments to the left and the right of the unique BamHI site in IR. A 35-base-pair sequence of the left fragment is directly repeated within the right fragment, once fully and once partially. The implications of these findings are discussed.  相似文献   

9.
The B goes to A conformational transition caused by high ethanol concentrations was studied for seven DNA restriction fragments with overlapping and known sequences. Since the DNAs are homogeneous and range in GC content from 44-63%, they permit an evaluation of the influence of DNA sequence and base composition on the B goes to A transition. Moreover, their small size (80-301 bp) minimizes precipitation artifacts. The B- form spectra (in low salt) and the transition toward the C- form (in ethanol concentrations below the B goes to A transition) agree with prior measurements on chromosomal DNAs and are similar for all seven DNAs. At higher ethanol concentrations (80%), all fragments undergo a transition to the A- form as judged by the large increase of the positive CD band at 270 nm. Difference spectra among the fragments reveal minor differences between the A- form spectra. The ethanol concentration necessary to cause this transition is 72 +/- 2% for all fragments, thus excluding a preference of the CAP-, E. coli RNA polymerase-, or lac repressor-binding sequences for the A- form. The kinetics of the B goes to A transition in 80% ethanol are biphasic; the initial rapid transition is an intramolecular B goes to A form shift and the slower transition is an aggregation (but not precipitation) of the DNA  相似文献   

10.
It seems increasingly evident that if the Z form of DNA exists in the genome it must exist as short sections of alternating pyrimidine-purine sequences in the midst of very long sections of B-form DNA. We have determined the minimum length of a string of alternating CG base pairs that can go into the Z form in the middle of a long B form. Self-complimentary oligomers of the form T(M)(CG)(N)A(M) were synthesized. The conformation of the resulting duplex was determined in 6M aqueous NaCl solution by Raman scattering. We have found that 12 alternating CG base pairs is the minimum length required to form a stable Z form of DNA inside of a long B form section. Only the 4 center CG base pairs go into the Z form. These 4 CG base pairs in the Z form are flanked on each side by 4 CG base pairs in a non-Z (probably B) form as well as the ..TT.. ..AA.. sequences in the B form. We propose a model of the B/Z junction in which the double helix flips directly from the B form to the Z form so that there are no base pairs in the junction. In this model the B form is nucleated in the AT base pairs on each end and is propagated into the CG base pairs in the center. This model is supported by isotopic H/D exchange experiments that shows that the H/D exchange of the non-Z form CG base pairs is highly retarded and indicates that they remain in the B form. A Thermodynamic analysis of the concentration dependence of the melting point of the duplexes in both low and high salt, supports our model and rules out the possibility of hairpin formation. The enthalpy for the formation of a B/Z junction is determined to be about +16 kcal/junction. A comparison of these results with recent results on B/Z junctions in super-coiled DNA is given. Molecular modeling calculations permit us to obtain values for the coordinates and torsional angles of the oligomers showing both B/Z and B/Z/B junctions. The Cartesian coordinates for these oligomers as well as stereo figures of these models in color are available from the authors.  相似文献   

11.
12.
The effect of the DNA-binding oligopeptide distamycin A on the B to A transition of DNA in ethanol/water solutions has been studied by means of CD. (The overbars indicate that it does not matter which particular form of the corresponding families is considered.) The results show that increasing the concentration of distamycin A reverses the A conformation (in 82% ethanol) to the B conformation due to its strong binding and stabilization of the latter. In accordance with previous data for pure aqueous solutions, a site size of 3.5 base pairs is obtained from the studies in water/ethanolic solutions. From the data on the B to A transition in the presence of distamycin A, we estimated the length of the cooperativity ν0 = 10 base pairs. The results demonstrate that the oligopeptide systems of distamycin, as well as those of netropsin, are effective stabilizers of the DNA B-conformation.  相似文献   

13.
14.
The mutational spectra generated in AS52 cells at the gpt gene locus by aniline mustards were studied by the isolation of resistant clones and sequencing of the altered gene. A set of four aniline mustards (both mono- and bifunctional) linked to a DNA-affinic 9-aminoacridine (9-AA) carrier was used, together with the untargeted mustards chlorambucil (CHL) and its half-mustard, and the DNA binding carrier, 9-AA. Both 9-AA and CHL were weak cytotoxins, with the DNA-targeted mustards being markedly (10-40-fold) more dose potent, and the bifunctional ones somewhat more toxic than the monofunctional ones. 9-AA produced a different spectrum of mutations to the spontaneous background, with more minor addition events and less base pair substitutions, and showing for the first time that frameshift events so characteristic of 9-AA in bacteria or bacteriophage also occur in mammalian cells. The mutational spectra of the DNA-targeted mustards were quite different both from this and from the lesions caused by the untargeted mustards, which cause largely transition mutations at AT sites (despite a clear preference for formation of N(7)-guanine adducts). There were very few transition mutations, suggesting that the initial O(6)-alkylguanine/O(4)-alkylthymine lesions considered to give rise to these are relatively rare. There was also a lower incidence of complete deletions, usually attributed to DNA cross-links. For the short chain length targeted mustards, which form initial stable adducts largely (95%) at guanine N(7) sites, base pair substitution mutations, predominantly transversions, involved AT and GC base pairs equally. In contrast, the longer chain length targeted mustards, which form >90% of initial adducts at adenine N(1) sites, generated also formed transversion mutations, but these overwhelmingly (24/27) involved AT base pairs.  相似文献   

15.
Two single-stranded DNA heptadecamers corresponding to the yeast tRNA(Phe) anticodon stem-loop were synthesized, and the solution structures of the oligonucleotides, d(CCAGACTGAAGATCTGG) and d(CCAGACTGAAGAU-m5C-UGG), were investigated using spectroscopic methods. The second, or modified, base sequence differs from that of DNA by RNA-like modifications at three positions; dT residues were replaced at positions 13 and 15 with dU, and the dC at position 14 with d(m5C), corresponding to positions where these nucleosides occur in tRNA(Phe). Both oligonucleotides form intramolecular structures at pH 7 in the absence of Mg2+ and undergo monophasic thermal denaturation transitions (Tm = 47 degrees C). However, in the presence of 10 mM Mg2+, the modified DNa adopted a structure that exhibited a biphasic "melting" transition (Tm values of 23 and 52 degrees C) whereas the unmodified DNA structure exhibited a monophasic denaturation (Tm = 52 degrees C). The low-temperature, Mg(2+)-dependent structural transition of the modified DNA was also detected using circular dichroism (CD) spectroscopy. No such transition was exhibited by the unmodified DNA. This transition, unique to the modified DNA, was dependent on divalent cations and occurred most efficiently with Mg2+; however, Ca2+ also stabilized the alternative conformation at low temperature. NMR studies showed that the predominant structure of the modified DNA in sodium phosphate (pH 7) buffer in the absence of Mg2+ was a hairpin containing a 7-nucleotide loop and a stem composed of 3 stable base pairs. In the Mg(2+)-stabilized conformation, the loop became a two-base turn due to the formation of two additional base pairs across the loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The interaction of the anticancer antibiotic altromycin B and its isostructrural Pt(II) and Pd(II) metal complexes with native calf thymus (CT) DNA was studied using UV-thermal denaturation experiments, circular dichroism spectroscopy and temperature controlled spectrophotometric titrations. Altromycin B stabilizes the double helix by raising the T(m), mainly by intercalation of its chromophore between the base pairs and interacting electrostatically via its sugar moieties with the edges of the DNA helix. Moreover, altromycin B induces a B-->A structural transition of CT DNA. The effect on DNA stability and conformation depends on the metal ion. Pt(II) and Pd(II) complexes induce the B-->A structural transition and stabilize the double helix similarly but they present lower final hyperchromicity due to premelting effects which were caused by intra- and interstrand crosslinking. Thus, a synergic effect of the metal ions to altromycin B-CT DNA interaction is observed in both cases. Altromycin B interacts with 5'-GMP, 5'-AMP and 5'-CMP by electrophilic attack of the opened epoxide ring to the N(7)G, N(1)/N(7)A and N(3)C. Thus, covalent binding between these nucleotides and altromycin B takes place and explain the multiple binding mode suggested by the studies of the interaction of altromycin B and its complexes with DNA. The [Pd(II)-altroB] complex dissociates in the presence of the nucleotides, and various species of Pd(II)-nucleotide complexes, especially with 5'-GMP, are formed. The [Pt(II)-altroB] complex dissociates too, but only one or two species of Pt(II)-nucleotide complexes are formed, and in the case of 5'-AMP interaction the formation of a tertiary altroB-Pt(II)-5'AMP complex is proposed. 5'-TMP reacts very weakly in comparison with the other three nucleotides. These interactions were followed by 1H-NMR.  相似文献   

17.
The Structure of DNA within Cationic Lipid/DNA Complexes   总被引:2,自引:0,他引:2       下载免费PDF全文
The structure of DNA within CLDCs used for gene delivery is controversial. Previous studies using CD have been interpreted to indicate that the DNA is converted from normal B to C form in complexes. This investigation reexamines this interpretation using CD of model complexes, FTIR as well as Raman spectroscopy and molecular dynamics simulations to address this issue. CD spectra of supercoiled plasmid DNA undergo a significant loss of rotational strength in the signal near 275 nm upon interaction with either the cationic lipid dimethyldioctadecylammonium bromide or 1,2-dioleoyltrimethylammonium propane. This loss of rotational strength is shown, however, by both FTIR and Raman spectroscopy to occur within the parameters of the B-type conformation. Contributions of absorption flattening and differential scattering to the CD spectra of complexes are unable to account for the observed spectra. Model studies of the CD of complexes prepared from synthetic oligonucleotides of varying length suggest that significant reductions in rotational strength can occur within short stretches of DNA. Furthermore, some alteration in the hydrogen bonding of bases within CLDCs is indicated in the FTIR and Raman spectroscopy results. In addition, alterations in base stacking interactions as well as hydrogen bonding are suggested by molecular dynamics simulations. A global interpretation of all of the data suggests the DNA component of CLDCs remains in a variant B form in which base/base interactions are perturbed.  相似文献   

18.
S Segawa  T Fukuno  K Fujiwara  Y Noda 《Biopolymers》1991,31(5):497-509
CD spectra of reduced and S-3-(trimethylated amino) propylated lysozyme (TMAP lysozyme) have been measured in various solutions containing guanidine hydrochloride or trifluoroethanol (TFE). The CD spectra indicate that there remain residual secondary structures in protein in aqueous solution. The addition of TFE further promotes the formation of secondary structures. In order to examine whether secondary structures are evenly induced over all the polypeptide chain, or locally at particular segments, the limited proteolysis of TMAP lysozyme by trypsin has been performed, and the CD spectra of all the final and intermediate products have been observed in solutions containing TFE. As a result, the fragments vary in a helix-forming propensity. The CD spectra of peptide fragments T5, T7, T9T10, T12T13, T14T15T16, and T17T18 are not significantly affected by the addition of TFE, where T refers to the nomenclature of R.E. Canfield [(1963), Journal of Biological Chemistry, Vol. 238, pp. 2691-2697]. They are fragments of a helix-breaking propensity. On the other hand, fragment I2 composed of T1-T4, and fragments T6T7, T8, and T11, attain secondary structures with the addition of TFE. They are fragments of a helix-forming propensity. Further, it is found that the fragments of a helix-forming propensity just correspond to the helical segments in native lysozyme. We examine the interactions between neighboring fragments, which contribute to the stabilization of local structures along the polypeptide chain.  相似文献   

19.
A family of covalent complexes between oligonucleotides and derivatives of the intercalating agent 9-amino acridine has been synthesized (Asseline, U., Thuong, N.T. and Helene, C. (1983) C.R.Acad. Sci. (Paris) 297 (III), 369-372) and studied (Lancelot, G., Asseline, U., Thuong, N.T., and Helene, C. (1985) Biochemistry 24, 2521-2529; Lancelot, G., Asseline, U., Thuong, N.T., and Helene, C. (1985) J. Biomol. Str. Dyn. 3, 913-921) with a view to understand nucleic acid-nucleic acid recognition. In order to understand the nature of interactions between the intercalator and the oligonucleotides in such complexes and the sensitivity of such interactions to the polymorphic form of the DNA, we have carried out molecular mechanics simulations on duplex deoxyoligonucleotides d(A)6.d(T)6 (A and B forms) and d(TATC).d(GATA) (B form) covalently bound to 2-methoxy-6-chloro-9-aminoacridine through a pentamethylene linker chain. Structures in which the acridine derivative is end stacked (at the 3' and 5' ends) and in which the dye is intercalated between the terminal base pairs (at both the ends) and between second and third base pairs from the 3' end are all of reasonably low energy in both A and B forms of DNA. Our studies on 3' end complexes find that in the B form, intercalation of the dye between the second and third base pairs is preferred over the other two modes of binding, while in the A form, intercalation between the terminal base pairs is preferred. In the 5' end A and B form complexes, outside stacking and intercalation between the terminal base pairs are preferred, respectively. Our calculations suggest the possibility that the presence of the dye attached covalently to the DNA can induce conformational transitions in the DNA. For example, intercalation of the dye two base pairs from the end could induce an A----B transition.  相似文献   

20.
Pierrat OA  Maxwell A 《Biochemistry》2005,44(11):4204-4215
Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号