首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
beta-Amyloid (Abeta) deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease (AD). Although the molecular mechanisms by which Abeta contributes to the progression of neuropathologic changes have not been established entirely, there is little doubt that the association of Abeta with astrocytes, the predominant cell type in brain, has significant influence on exacerbation of the disease. In an effort to identify key molecules involved in AD, we investigated Abeta-responsive genes using rat astrocytes. In this study, we identified a novel Abeta-induced rat gene, designated as Lib, encoding a type I transmembrane protein with an extracellular domain that contains fifteen leucine-rich repeats (LRRs). Human counterpart of rat Lib is located on chromosome 3q29 and human Lib mRNA found in particularly placenta. Lib mRNA levels in rat C6 astrocytoma cells can be increased by pro-inflammatory cytokines and the rat Lib-transfected cells express Lib protein on the cell surfaces. Lib appears to be a member of the LRR superfamily which is involved in cell-cell and/or -extracellular matrix interactions including adhesion or target recognition in neuroinflammatory states.  相似文献   

2.
Hozumi  I.  Inuzuka  T.  Tsuji  S. 《Neurochemical research》1998,23(3):319-328
Growth inhibitory factor (GIF) is a small (7 kDa), heat-stable, acidic, hydrophilic metallothionein (MT)-like protein. GIF inhibits the neurotrophic activity in Alzheimer's disease (AD) brain extracts on neonatal rat cortical neurons in culture. GIF has been shown to be drastically reduced and down-regulated in AD brains. In neurodegenerative diseases in humans, GIF expression levels are reduced whereas GFAP expression levels are markedly induced in reactive astrocytes. Both GIF and GIF mRNA are present at high levels in reactive astrocytes following acute experimental brain injury. In chronological observations the level of GIF was found to increase more slowly and remain elevated for longer periods than that of glial fibrillary acidic protein (GFAP). These differential patterns and distribution of GIF and GFAP seem to be important in understanding the mechanism of brain tissue repair. The most important point concerning GIF in AD is not simply the decrease in the level of expression throughout the brain, but the drastic decrease in the level of expression in reactive astrocytes around senile plaques in AD. Although what makes the level of GIF decrease drastically in reactive astrocytes in AD is still unknown, supplements of GIF may be effective for AD, based on a review of current evidence. The processes of tissue repair following acute brain injury are considered to be different from those in AD from the viewpoint of reactive astrocytes.  相似文献   

3.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

4.
Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme   总被引:2,自引:0,他引:2  
The brains of Alzheimer's disease (AD) patients are morphologically characterized by neurofibrillar abnormalities and by parenchymal and cerebrovascular deposits of beta-amyloid peptides. The generation of beta-amyloid peptides by proteolytical processing of the amyloid precursor protein (APP) requires the enzymatic activity of the beta-site APP cleaving enzyme 1 (BACE1). The expression of this enzyme has been localized to the brain, in particular to neurons, indicating that neurons are the major source of beta-amyloid peptides in brain. Astrocytes, on the contrary, are known to be important for beta-amyloid clearance and degradation, for providing trophic support to neurons, and for forming a protective barrier between beta-amyloid deposits and neurons. However, under certain conditions related to chronic stress, the role of astrocytes may not be beneficial. Here we present evidence demonstrating that astrocytes are an alternative source of BACE1 and therefore may contribute to beta-amyloid plaque formation. While resting astroyctes in brain do not express BACE1 at detectable levels, cultured astrocytes display BACE1 promoter activity and express BACE1 mRNA and enzymatically active BACE1 protein. Additionally, in animal models of chronic gliosis and in brains of AD patients, there is BACE1 expression in reactive astrocytes. This would suggest that the mechanism for astrocyte activation plays a role in the development of AD and that therapeutic strategies that target astrocyte activation in brain may be beneficial for the treatment of AD. Also, there are differences in responses to chronic versus acute stress, suggesting that one consequence of chronic stress is an incremental shift to different phenotypic cellular states.  相似文献   

5.
6.
Abstract: Large numbers of neuritic plaques surrounded by reactive astrocytes are characteristic of Alzheimer's disease (AD). There is a large body of research supporting a causal role for the amyloid β peptide (Aβ), a main constituent of these plaques, in the neuropathology of AD. Several hypotheses have been proposed to explain the toxicity of Aβ including free radical injury and excitotoxicity. It has been reported that treatment of neuronal/astrocytic cultures with Aβ increases the vulnerability of neurons to glutamate-induced cell death. One mechanism that may explain this finding is inhibition of the astrocyte glutamate transporter by Aβ. The aim of the current study was to determine if Aβs inhibit astrocyte glutamate uptake and if this inhibition involves free radical damage to the transporter/astrocytes. We have previously reported that Aβ can generate free radicals, and this radical production was correlated with the oxidation of neurons in culture and inhibition of astrocyte glutamate uptake. In the present study, Aβ (25–35) significantly inhibited l -glutamate uptake in rat hippocampal astrocyte cultures and this inhibition was prevented by the antioxidant Trolox. Decreases in astrocyte function, in particular l -glutamate uptake, may contribute to neuronal degeneration such as that seen in AD. These results lead to a revised excitotoxicity/free radical hypothesis of Aβ toxicity involving astrocytes.  相似文献   

7.
Lib, first identified as a novel beta-amyloid responsive gene in rat astrocytes, has an extracellular domain of 15 leucine-rich repeats (LRRs) followed by a transmembrane domain and a short cytoplasmic region. It is a distinctly inducible gene and is thought to play a key role in inflammatory states via the LRR extracellular motif, an ideal structural framework for protein-protein and protein-matrix interactions. To evaluate potential roles of Lib, we screened various tumors for Lib expression. Lib mRNA expression was high and uniquely expressed in breast tumor tissues, compared to paired normal breast tissues. Lib mRNA was localized in the ductal carcinoma cells and Lib protein displayed a homophilic association on the surface of cultured cells. These data suggest that Lib may play a role in the progression of breast carcinomas and may be a diagnostic marker for breast tumors.  相似文献   

8.
TGF-β1 mRNA and protein were recently found to increase in animal brains after experimental lesions that cause local deafferentation or neuron death. Elevations of TGF-β1 mRNA after lesions are prominent in microglia but are also observed in neurons and astrocytes. Moreover, TGF-β1 mRNA autoinduces its own mRNA in the brain. These responses provide models for studying the increases of TGF-β1 protein observed in βA/amyloid-containing extracellular plaques of Alzheimer's disease (AD) and Down's syndrome (DS) and in brain cells of AIDS victims. Involvement of TGF-β1 in these human brain disorders is discussed in relation to the potent effects of TGF-β1 on wound healing and inflammatory responses in peripheral tissues. We hypothesize that TGF-β1 and possibly other TGF-β peptides have organizing roles in responses to neurodegeneration and brain injury that are similar to those observed in non-neural tissues. Work from many laboratories has shown that activities of TGF-β peptides on brain cells include chemotaxis, modification of extracellular matrix, and regulation of cytoskeletal gene expression and of neurotrophins. Similar activities of the TGF-β's are well established in other tissues.  相似文献   

9.
Differential expression of cholesterol hydroxylases in Alzheimer's disease   总被引:7,自引:0,他引:7  
Cholesterol is eliminated from neurons by oxidization, which generates oxysterols. Cholesterol oxidation is mediated by the enzymes cholesterol 24-hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1). Immunocytochemical studies show that CYP46A1 and CYP27A1 are expressed in neurons and some astrocytes in the normal brain, and CYP27A1 is present in oligodendrocytes. In Alzheimer's disease (AD), CYP46A1 shows prominent expression in astrocytes and around amyloid plaques, whereas CYP27A1 expression decreases in neurons and is not apparent around amyloid plaques but increases in oligodendrocytes. Although previous studies have examined the effects of synthetic oxysterols on the processing of amyloid precursor protein (APP), the actions of the naturally occurring oxysterols have yet to be examined. To understand the role of cholesterol oxidation in AD, we compared the effects of 24(S)- and 27-hydroxycholesterol on the processing of APP and analyzed the cell-specific expression patterns of the two cholesterol hydroxylases in the human brain. Both oxysterols inhibited production of Abeta in neurons, but 24(S)-hydroxycholesterol was approximately 1000-fold more potent than 27-hydroxycholesterol. The IC(50) of 24(S)-hydroxycholesterol for inhibiting Abeta secretion was approximately 1 nm. Both oxysterols induced ABCA1 expression with IC(50) values similar to that for inhibition of A beta secretion, suggesting the involvement of liver X receptor. Oxysterols also inhibited protein kinase C activity and APP secretion following stimulation of protein kinase C. The selective expression of CYP46A1 around neuritic plaques and the potent inhibition of APP processing in neurons by 24(S)-hydroxycholesterol suggests that CYP46A1 affects the pathophysiology of AD and provides insight into how polymorphisms in the CYP46A1 gene might influence the pathophysiology of this prevalent disease.  相似文献   

10.
Mitochondrial dysfunction and oxidative stress are hallmarks of various neurological disorders, including multiple sclerosis (MS), Alzheimer disease (AD), and Parkinson disease (PD). Mutations in PINK1, a mitochondrial kinase, have been linked to the occurrence of early onset parkinsonism. Currently, various studies support the notion of a neuroprotective role for PINK1, as it protects cells from stress-mediated mitochondrial dysfunction, oxidative stress, and apoptosis. Because information about the distribution pattern of PINK1 in neurological diseases other than PD is scarce, we here investigated PINK1 expression in well-characterized brain samples derived from MS and AD individuals using immunohistochemistry. In control gray matter PINK1 immunoreactivity was observed in neurons, particularly neurons in layers IV-VI. Astrocytes were the most prominent cell type decorated by anti-PINK1 antibody in the white matter. In addition, PINK1 staining was observed in the cerebrovasculature. In AD, PINK1 was found to colocalize with classic senile plaques and vascular amyloid depositions, as well as reactive astrocytes associated with the characteristic AD lesions. Interestingly, PINK1 was absent from neurofibrillary tangles. In active demyelinating MS lesions we observed a marked astrocytic PINK1 immunostaining, whereas astrocytes in chronic lesions were weakly stained. Taken together, we observed PINK1 immunostaining in both AD and MS lesions, predominantly in reactive astrocytes associated with these lesions, suggesting that the increase in astrocytic PINK1 protein might be an intrinsic protective mechanism to limit cellular injury.  相似文献   

11.
12.
Ceruloplasmin (CP) is a 132kd cuproprotein which, together with transferrin, provides the majority of anti-oxidant capacity in serum. Increased iron deposition and lipid peroxidation in the basal ganglia of subjects with hereditary CP deficiency suggest that CP may serve as an anti-oxidant in the brain as well. The present study compared CP immunoreactivity in brain specimens from normal controls and subjects with neurodegenerative disorders (Alzheimer's disease [AD], Parkinson's disease [PD], progressive supranuclear palsy [PSP], and Huntington's disease [HD]) (n = 5 per group). The relative intensity of neuronal CP staining and the numbers of CP-stained neurons per 25x microscope field were determined in hippocampus (CA1, subiculum, and parahippocampal gyrus), parietal cortex, frontal cortex, substantia nigra, and caudate. CP was detected in both neurons and astrocytes in all specimens, and in senile plaques and occasional neurofibrillary tangles in AD brain. Neuronal CP staining intensity tended to increase in most AD brain regions, but was statistically significant vs controls only in the CA1 region of hippocampus (p = .016). Neuronal CP staining in brain specimens from other neurodegenerative disorders showed a slight but nonsignificant increase vs controls. The numbers of CP-stained neurons per field did not differ between the various neurodegenerative disorders and controls. These results suggest that a modest increase in neuronal CP content is present in the AD brain, and lesser elevations in neuronal CP occur in the other neurodegenerative disorders in this study. Though CP functions as both an acute phase protein and an anti-oxidant in peripheral tissues, whether it does so in the brain remains to be determined.  相似文献   

13.
Non-amyloid beta (Abeta) component of Alzheimer's disease (AD) amyloid (NAC) coexists with Abeta protein in senile plaques. After exposure to NAC fibrils, cortical neurons of rat brain primary culture became apoptotic, while astrocytes were activated with extension of their processes. NAC fibrils decreased the activity of reducing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in cortical neurons more markedly (IC(50) = 5.6 microm) than in astrocytes (IC(50) approximately 50 microm). The neuron-specific toxicity of NAC fibrils was indicated also by an increased release of lactate dehydrogenase from the cells. Neuronal apoptosis was suppressed by pre-treatment with the antioxidants, propyl gallate (PG) and N-t-butyl-phenylnitrone (BPN), or overexpression of human Bcl-2. Exposure to NAC fibrils enhanced generation of reactive oxygen species (ROS) in neurons and less efficiently in astrocytes, as demonstrated by oxidation of 2',7'-dichlorofluorescin. The site of ROS generation was shown to be mitochondria by oxidation of chloromethyl-tetramethyl rosamine. Exposure to NAC fibrils increased also the nuclear translocation of nuclear factor kappa B (NF-kappaB) and enhanced its DNA-binding activity, which was inhibited by PG and BPN more efficiently in neurons than in astrocytes. These results suggest that NAC fibrils increase mitochondrial ROS generation and activate NF-kappaB, thereby causing a differential change in gene expression between neurons and astrocytes in the AD brain.  相似文献   

14.
Under pathological conditions such as ischemia/reperfusion, a large amount of superoxide anion (O(2) (-)) is produced and released in brain. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD, known to be excreted outside cells and bound to extracellular matrix, should play a role to detoxify O(2) (-) in extracellular space; however, a little is known about EC-SOD in brain. In order to evaluate the SOD activity in extracellular space of CNS as direct as possible, we attempted to measure the cell-surface SOD activity on primary cultured rat brain cells by the inhibition of color development of a water-soluble tetrazolium due to O(2) (-) generation by xanthine oxidase/hypoxanthine added into extracellular medium of intact cells. The cell-surface SOD activity on cultured neuron and microglia was below the detection limit; however, that on cultured astrocyte was high enough to measure. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected in the three types of the cells examined; however, the semi-quantitative analysis revealed that the level of EC-SOD mRNA in astrocytes was significantly higher than that in neurons and microglia. When astrocytes were stimulated with lipopolysaccharide (LPS) for 12-24?h, the cell-surface SOD activity decreased to a half, whereas the activity recovered after 36-48?h. The decrease in the activity was dependent on the LPS concentration. On the other hand, the SOD activity in the medium increased by the LPS-stimulation in a dose dependent manner; suggesting that the SOD protein localized on cell-surface, probably EC-SOD, was released into the medium. These results suggest that EC-SOD of astrocyte play a role for detoxification of extracellular O(2) (-) and the regulation of EC-SOD in astrocytes may contribute to the defensive mechanism against oxidative stress in brain.  相似文献   

15.
The endoplasmic reticulum (ER) stress response is a defense system for dealing with the accumulation of unfolded proteins in the ER lumen. Old astrocyte specifically induced substance (OASIS) is known to be expressed in astrocytes and involved in the ER stress response; however the function of OASIS in the injured brain has remained unclear. In this study, we examined the roles of OASIS in neuronal degeneration in the hippocampi of mice intraperitoneally injected with kainic acid (KA). OASIS mRNA was strongly induced in response to KA injection, with a similar time course to the induction of ER molecular chaperone immunoglobulin heavy chain binding protein mRNA. In situ hybridization showed that KA injection causes induction of immunoglobulin heavy chain binding protein mRNA in glial fibrillary acidic protein-positive astrocytes as well as in pyramidal neurons, although up-regulation of OASIS mRNA was only detected in glial fibrillary acidic protein-positive astrocytes. Primary cultured astrocytes, but not the neurons of OASIS −/− mice, revealed reduced vulnerability to ER stress. Furthermore, pyramidal neurons in the hippocampi of OASIS −/− mice were more susceptible to the toxicity induced by KA than those of wild-type mice. Taken together, these data suggest that OASIS expressed in astrocytes plays important roles in protection against the neuronal damage induced by KA.  相似文献   

16.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by amyloid-β (Aβ) deposition in senile plaques colocalized with activated microglia and astrocytes. Recent studies suggest that CXCL8 is involved in the AD pathogenesis. The objective of this study was to determine the cellular sources of CXCL8 in the central nervous system during AD pathogenesis, and investigate the effects of CXCL8 on neuronal survival and/or functions. Our results showed significantly higher CXCL8 levels in AD brain tissue lysates as compared to those of age-matched controls. Upon Aβ and/or pro-inflammatory cytokine stimulation, microglia, astrocytes and neurons were all capable of CXCL8 production in vitro. Although CXCL8-alone did not alter neuronal survival, it did inhibit Aβ-induced neuronal apoptosis and increased neuronal brain-derived neurotrophic factor (BDNF) production. We conclude that microglia, astrocytes and neurons, all contribute to the enhanced CXCL8 levels in the CNS upon Aβ and/or pro-inflammatory cytokine stimulation. Further, CXCL8 protects neurons possibly by paracrine or autocrine loop and regulates neuronal functions, therefore, may play a protective role in the AD pathogenesis.  相似文献   

17.
We previously showed that NDP52 (also known as calcoco2) plays a role as an autophagic receptor for phosphorylated tau facilitating its clearance via autophagy. Here, we examined the expression and association of NDP52 with autophagy-regulated gene (ATG) proteins including LC3, as well as phosphorylated tau and amyloid-beta (Aβ) in brains of an AD mouse model. NDP52 was expressed not only in neurons, but also in microglia and astrocytes. NDP52 co-localized with ATGs and phosphorylated tau as expected since it functions as an autophagy receptor for phosphorylated tau in brain. Compared to wild-type mice, the number of autophagic vesicles (AVs) containing NDP52 in both cortex and hippocampal regions was significantly greater in AD model mice. Moreover, the protein levels of NDP52 and phosphorylated tau together with LC3-II were also significantly increased in AD model mice, reflecting autophagy impairment in the AD mouse model. By contrast, a significant change in p62/SQSTM1 level was not observed in this AD mouse model. NDP52 was also associated with intracellular Aβ, but not with the extracellular Aβ of amyloid plaques. We conclude that NDP52 is a key autophagy receptor for phosphorylated tau in brain. Further our data provide clear evidence for autophagy impairment in brains of AD mouse model, and thus strategies that result in enhancement of autophagic flux in AD are likely to be beneficial.  相似文献   

18.
Abstract: Amyloid precursor protein (APP) gives rise by proteolytic processing to the amyloid β peptide (Aβ) found abundantly in cerebral senile plaques of individuals with Alzheimer's disease. APP is highly expressed in the brain. To assess the source of cerebral Aβ, the metabolism of APP was investigated in the major cell types of the newborn rat cerebral cortex by pulse/chase labeling and immunoprecipitation of the APP and APP metabolic fragments. We describe a novel C-terminally truncated APP isoform that appears to be made only in neurons. The synthesis, degradation, and metabolism of APP were quantified by phosphorimaging in neurons, astrocytes, and microglia. The results show that although little APP is metabolized through the amyloidogenic pathways in each of the three cultures, neurons appear to generate more Aβ than astrocytes or microglia.  相似文献   

19.
Lipoprotein lipase (LPL) is a member of a lipase family known to hydrolyze triglyceride molecules in plasma lipoprotein particles. LPL also plays a role in the binding of lipoprotein particles to cell-surface molecules, including sulfated glycosaminoglycans (GAGs). LPL is predominantly expressed in adipose and muscle but is also highly expressed in the brain where its specific roles are unknown. It has been shown that LPL is colocalized with senile plaques in Alzheimer disease (AD) brains, and its mutations are associated with the severity of AD pathophysiological features. In this study, we identified a novel function of LPL; that is, LPL binds to amyloid β protein (Aβ) and promotes cell-surface association and uptake of Aβ in mouse primary astrocytes. The internalized Aβ was degraded within 12 h, mainly in a lysosomal pathway. We also found that sulfated GAGs were involved in the LPL-mediated cellular uptake of Aβ. Apolipoprotein E was dispensable in the LPL-mediated uptake of Aβ. Our findings indicate that LPL is a novel Aβ-binding protein promoting cellular uptake and subsequent degradation of Aβ.  相似文献   

20.
Alzheimer's disease (AD) is characterized by increased beta amyloid (Abeta) levels, extracellular Abeta deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Abeta and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Abeta-42 (21%), and Abeta-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Abeta deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Abeta levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Abeta-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号