首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence has accumulated that some of the angiotensin II AT1 receptor antagonists have insulin-sensitizing property. We thus examined the effect of telmisartan on insulin action using 3T3-L1 adipocytes. With standard differentiation inducers, a higher dose of telmisartan effectively facilitated differentiation of 3T3-L1 preadipocytes. Treatment of both differentiating adipocytes and fully differentiated adipocytes with telmisartan caused a dose-dependent increase in mRNA levels for PPARgamma target genes such as aP2 and adiponectin. By contrast, telmisartan attenuated 11beta-hydroxysteroid dehydrogenase type 1 mRNA level in differentiated adipocytes. Of note, we demonstrated for the first time that telmisartan augmented GLUT4 protein expression and 2-deoxy glucose uptake both in basal and insulin-stimulated state of adipocytes, which may contribute, at least partly, to its insulin-sensitizing ability.  相似文献   

2.
Adiponectin is a hormone secreted from adipose tissue, and serum levels are decreased with obesity and insulin resistance. Because prolactin (PRL) and growth hormone (GH) can affect insulin sensitivity, we investigated the effects of these hormones on the regulation of adiponectin in human adipose tissue in vitro and in rodents in vivo. Adiponectin secretion was significantly suppressed by PRL and GH in in vitro cultured human adipose tissue. Furthermore, PRL increased adiponectin receptor 1 (AdipoR1) mRNA expression and GH decreased AdipoR2 expression in the cultured human adipose tissue. In transgenic mice expressing GH, and female mice expressing PRL, serum levels of adiponectin were decreased. In contrast, GH receptor deficient mice had elevated adiponectin levels, while PRL receptor deficient mice were unaffected. In conclusion, we demonstrate gene expression of AdipoR1 and AdipoR2 in human adipose tissue for the first time, and show that these are differentially regulated by PRL and GH. Both PRL and GH reduced adiponectin secretion in human adipose tissue in vitro and in mice in vivo. Decreased serum adiponectin levels have been associated with insulin resistance, and our data in human tissue and in transgenic mice suggest a role for adiponectin in PRL and GH induced insulin resistance.  相似文献   

3.
Exendin-4 (Ex-4) is a glucagon-like peptide-1 receptor (GLP-1R) agonist that has been used as a drug injected subcutaneously for treatment of type 2 diabetes. Many studies have revealed molecular targets of Ex-4, but its influence on adipokines has not been determined. Our study showed that Ex-4 induced secretion of adiponectin into the culture medium of 3T3-L1 adipocytes. This effect of Ex-4 is due to increased adiponectin mRNA level through the GLP-1R. Both forskolin and 3-isobutyl-1-methylxanthine (IBMX), which may finally elevate cyclic adenosine monophosphate (cAMP) concentration, prevented the induction of adiponectin expression by Ex-4. Moreover, H89, a protein kinase A inhibitor, blocked the effect of Ex-4 on adiponectin. On the other hand, Ex-4 decreased the mRNA levels of inflammatory adipokines. The results indicate that Ex-4 directly promotes adiponectin secretion via the protein kinase A pathway in 3T3-L1 adipocytes and may ameliorate insulin resistance.  相似文献   

4.
The metabolic syndrome is strongly associated with insulin resistance and has been recognized as a cluster of risk factors for cardiovascular disease. Insulin resistance and/or impaired early-phase insulin secretion are major determinants of postprandial hyperglycemia. In this study, we investigated the potential utility of combination therapy with telmisartan, an angiotensin II receptor blocker and nateglinide, a rapid-onset/short-duration insulinotropic agent, for the treatment of postprandial hyperglycemia and metabolic derangements in Zucker Fatty (ZF) rats. ZF rats fed twice daily were given vehicle, 50 mg/kg of nateglinide, 5 mg/kg of telmisartan, or both for 6 weeks. Combination therapy with nateglinide and telmisartan for 2 weeks ameliorated postprandial hyperglycemia in ZF rats fed twice daily. Furthermore, 6-week treatment with nateglinide and telmisartan not only decreased fasting plasma insulin, triglycerides, and free fatty acid levels, but also improved the responses of blood glucose to insulin and subsequently reduced the decremental glucose areas under the curve in the ZF rats. Combination therapy also restored the decrease of plasma adiponectin levels in the ZF rats. Monotherapy with nateglinide or telmisartan alone didnot significantly improve these metabolic parameters. These observations demonstrate that combination therapy with nateglinide and telmisartan may improve the metabolic derangements by ameliorating early phase of insulin secretion as well as insulin resistance in ZF rats fed twice daily. Our present findings suggest that the combination therapy with nateglinide and telmisartan could be a promising therapeutic strategy for the treatment of the metabolic syndrome.  相似文献   

5.
Adiponectin is an abundantly expressed adipokine in adipose tissue and has direct insulin sensitizing activity. A decrease in the circulating levels of adiponectin by interactions between genetic factors and environmental factors causing obesity has been shown to contribute to the development of insulin resistance, type 2 diabetes, metabolic syndrome and atherosclerosis. In addition to its insulin sensitizing actions, adiponectin has central actions in the regulation of energy homeostasis. Adiponectin enhances AMP-activated protein kinase activity in the arcuate hypothalamus via its receptor AdipoR1 to stimulate food intake and decreases energy expenditure. We propose a hypothesis on the physiological role of adiponectin: a starvation gene in the course of evolution by promoting fat storage on facing the loss of adiposity.  相似文献   

6.
Advanced glycation end products (AGEs) and their receptor (RAGE) have been shown to play a role in insulin resistance. We have previously shown that combination therapy with nateglinide (NAT) and telmisartan (TEL) improves postprandial metabolic derangements in Zucker fatty (ZF) rats, an animal model of insulin resistance with obesity. However, effects of combination therapy on insulin resistance remain unknown. We investigated here whether combination therapy with TEL and NAT could ameliorate insulin resistance in ZF rats by suppressing AGE-RAGE axis. NAT and/or TEL inhibited insulin receptor substrate-1 (IRS-1) serine phosphorylations at 307 and 636/639 residues in the liver of ZF rats. Further, combination therapy with NAT and TEL, but not each monotherapy alone, significantly restored the decrease in hepatic IRS-1 tyrosine phosphorylation in these animals. In addition, serum levels of AGEs, RAGE expression levels in the liver and hepatic AGE-RAGE index were decreased in NAT plus TEL-treated ZF rats. The present study suggests that combination therapy with NAT and TEL could ameliorate insulin resistance in ZF rats by suppressing the AGE-RAGE axis in the liver.  相似文献   

7.
8.
The metabolic syndrome is strongly associated with insulin resistance and consists of a constellation of factors such as hypertension and hyperlipidemia that raise the risk for cardiovascular diseases and diabetes mellitus. There is widespread agreement that the renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of insulin resistance and cardiovascular disease in diabetes. Indeed, large clinical trials have demonstrated substantial benefit of the blockade of this system for cardiovascular end-organ protection. Thus the blockade of the RAS may be a promising strategy for the treatment of the patients with the metabolic syndrome. Although several types of angiotensin II type 1 (AT(1)) receptor blockers (ARBs) are commercially available for the treatment of patients with hypertension, we have recently found that telmisartan (Micardis) could have the strongest binding affinity to AT(1) receptor. Further, telmisartan is reported to act as a partial agonist of peroxisome proliferator-activated receptor-gamma (PPAR-gamma). These observations suggest that, due to its unique PPAR-gamma-modulating activity, telmisartan may be one of the most promising sartans for the treatment of cardiometabolic disorders. In this paper, we reviewed the potential utility of telmisartan in insulin resistance and vascular complications in diabetes.  相似文献   

9.
10.
Obesity and insulin resistance have been recognized as leading causes of major health issues. We have endeavored to depict the molecular mechanism of insulin resistance, focusing on the function of adipocyte. We have investigated a role of PPARgamma on the pathogenesis of Type II diabetes. Heterozygous PPARgamma-deficient mice were protected from the development of insulin resistance due to adipocyte hypertrophy under a high-fat diet. Moreover, a Pro12Ala polymorphism in the human PPARgamma2 gene was associated with decreased risk of Type II diabetes in Japanese. Taken together with these results, PPARgamma is proved to be a thrifty gene mediating Type II diabetes. Pharmacological inhibitors of PPARgamma/RXR ameliorate high-fat diet-induced insulin resistance in animal models of Type II diabetes. We have performed a genome-wide scan of Japanese Type 2 diabetic families using affected sib pair analysis. Our genome scan reveals at least 9 chromosomal regions potentially harbor susceptibility genes of Type II diabetes in Japanese. Among these regions, 3q26-q28 appeared to be very attractive one, because of the gene encoding adiponectin, the expression of which we had found enhanced in insulin-sensitive PPARgamma-deficient mice. Indeed, the subjects with the G/G genotype of SNP276 in the adiponectin gene were at increased risk for Type II diabetes compared with those having the T/T genotype. The plasma adiponectin levels were lower in the subjects with the G allele, suggesting that genetically inherited decrease in adiponectin levels predispose subjects to insulin resistance and Type II diabetes. Our work also confirmed that replenishment of adiponectin represents a novel treatment strategy for insulin resistance and Type II diabetes using animal models. Further investigation will be needed to clarify how adiponectin exerts its effect and to discover the molecular target of therapies.  相似文献   

11.
Adiponectin is one of the most thoroughly studied adipocytokines. Low plasma levels of adiponectin are found to associate with obesity, metabolic syndrome, diabetes and many other human diseases. From animal experiments and human studies, adiponectin has been shown to be a key regulator of insulin sensitivity. In this article, we review the evidence and propose that hypo-adiponectinemia is not a major cause of obesity. Instead, it is the result of obesity-induced insulin resistance in the adipose tissue. Hypo-adiponectinemia then mediates the metabolic effects of obesity on the other peripheral tissues, such as liver and skeletal muscle and may also exert some direct effects on end-organ damage. We propose that deciphering the molecular details governing the adiponectin gene expression and protein secretion will lead us to more comprehensive understanding of the mechanisms of insulin resistance in the adipose tissue and provide us new avenues for the therapeutic intervention of obesity and insulin resistance-related human disorders  相似文献   

12.
Angiotensin II type 1 receptor (AT1 receptor) blockers (ARBs) are one of the most popular anti-hypertensive agents. Control of blood pressure (BP) by ARBs is now a therapeutic target for the organ protection in patients with hypertension. Recent meta-analysis demonstrated the possibility that telmisartan was the strongest ARB for the reduction of BP in patients with essential hypertension. However, which molecular interactions of telmisartan with the AT1 receptor could explain its strongest BP lowering activity remains unclear. To address the issue, we constructed models for the interaction between commonly used ARBs and AT1 receptor and compared the docking model of telmisartan with that of other ARBs. Telmisartan has a unique binding mode to the AT1 receptor due to its distal benzimidazole portion. This unique portion could explain the highest molecular lipophilicity, the greatest volume distribution and the strongest binding affinity of telmisartan to AT1 receptor. Furthermore, telmisartan was found to firmly bind to the AT1 receptor through the unique “delta lock” structure. Our present study suggests that due to its “delta lock” structure, telmisartan may be superior to other ARBs in halting cardiovascular disease in patients with hypertension.  相似文献   

13.
14.
15.
16.
Topiramate is an antiepileptic drug known to ameliorate insulin resistance besides reducing body weight. Albeit liver plays a fundamental role in regulation of overall insulin resistance, yet the effect of topiramate on this organ is controversial and is not fully investigated. The current work aimed to study the potential hepatic molecular mechanistic cassette of the anti-insulin resistance effect of topiramate. To this end, male Wistar rats were fed high fat/high fructose diet (HFFD) for 10 weeks to induce obese, insulin resistant, hyperglycemic animals, but with no overt diabetes. Two HFFD-groups received oral topiramate, 40 or 100 mg/kg, for two weeks. Topiramate, on the hepatic molecular level, has opposed the high fat/high fructose diet effect, where it significantly increased adiponectin receptors, GLUT2, and tyrosine kinase activity, while decreased insulin receptor isoforms. Besides, it improved the altered glucose homeostasis and lipid profile, lowered the ALT level, caused subtle, yet significant decrease in TNF-α, and boosted adiponectin in a dose dependent manner. Moreover, topiramate decreased liver weight/, visceral fat weight/, and epididymal fat weight/body weight ratios. The study proved that insulin-resistance has an effect on hepatic molecular level and that the topiramate-mediated insulin sensitivity is ensued partly by modulation of hepatic insulin receptor isoforms, activation of tyrosine kinase, induction of GLUT2 and elevation of adiponectin receptors, as well as their ligand, adiponectin, besides its known improving effect on glucose tolerance and lipid homeostasis.  相似文献   

17.
The adipocyte-derived hormone adiponectin has been shown to play important roles in the regulation of energy homeostasis and insulin sensitivity. In this study, we analyzed globular domain adiponectin (gAd) transgenic (Tg) mice crossed with leptin-deficient ob/ob or apoE-deficient mice. Interestingly, despite an unexpected similar body weight, gAd Tg ob/ob mice showed amelioration of insulin resistance and beta-cell degranulation as well as diabetes, indicating that globular adiponectin and leptin appeared to have both distinct and overlapping functions. Amelioration of diabetes and insulin resistance was associated with increased expression of molecules involved in fatty acid oxidation such as acyl-CoA oxidase, and molecules involved in energy dissipation such as uncoupling proteins 2 and 3 and increased fatty acid oxidation in skeletal muscle of gAd Tg ob/ob mice. Moreover, despite similar plasma glucose and lipid levels on an apoE-deficient background, gAd Tg apoE-deficient mice showed amelioration of atherosclerosis, which was associated with decreased expression of class A scavenger receptor and tumor necrosis factor alpha. This is the first demonstration that globular adiponectin can protect against atherosclerosis in vivo. In conclusion, replenishment of globular adiponectin may provide a novel treatment modality for both type 2 diabetes and atherosclerosis.  相似文献   

18.
Insulin resistance and adiposity induced by a long-term sucrose-rich diet (SRD) in rats could be reversed by fish oil (FO). Regulation of plasma leptin and adiponectin levels, as well as their gene expression, by FO might be implicated in these findings. This study was designed to evaluate the long-term regulation of leptin and adiponectin by dietary FO in a dietary model of insulin resistance induced by long-term SRD in rats and to determine their impact on adiposity and insulin sensitivity. Rats were randomized to consume a control diet (CD; n = 25) or an SRD (n = 50) for 7 mo. Subsequently, the SRD-fed rats were randomized to consume SRD+FO or to continue on SRD for an additional 2 mo. Long-term SRD induced overweight and decreased both plasma leptin and adiponectin levels without change in gene expression. Dyslipidemia, adiposity, and insulin resistance accompanied these modifications. Shifting the source of fat to FO for 2 mo increased plasma levels of both adipokines, reversed insulin resistance and dyslipidemia, and improved adiposity. These results were not associated with modifications in gene expression. These results suggest that increasing both adipokines by dietary FO might play an essential role in the normalization of insulin resistance and adiposity in dietary-induced, insulin-resistant models.  相似文献   

19.
20.
To investigate the effects of recombinant human adiponectin on the metabolism of diabeticswine induced by feeding a high-fat/high-sucrose diet (HFSD),diabetic animal models were constructedby feeding swine with HFSD for 6 months.The effects of recombinant adiponectin were assessed bydetecting the change of plasma glucose levels by commercially available enzymatic method test kits andevaluating the insulin sensitivity by oral glucose tolerance test (OGTT). About 1.5 g purified recombinantadiponectin was produced using a 15-liter fermenter.A single injection of purified recombinant humanadiponectin to diabetic swine led to a 2- to 3-fold elevation in circulating adiponectin,which triggered atransient decrease in basal glucose level (P<0.05).This effect on glucose was not associated with anincrease in insulin level.Moreover,after adiponectin injection,swine also showed improved insulin sensitivitycompared with the control (P<0.05).Adiponectin might have the potential to be a glucose-lowering agentfor metabolic disease.Adiponectin as a potent insulin enhancer linking adipose tissue and glucose metabolismcould be useful to treat insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号