首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
研究1例来源于4月龄男性流产胎儿胰腺组织的单克隆人胰腺干细胞(monoclonal human pancreatic stem cell,mhPSC)系的体内外分化特性。将mhPSCs接种在铺有0.1%明胶的培养皿内,扩增培养3d后,加高糖DMEM诱导液诱导培养25d。相差显微镜下.观察细胞生长状况。采用双硫腙染色法、RT—PCR及葡萄糖刺激释放胰岛素和C肽实验.对体外定向诱导mhPSCs分化为功能性胰岛进行检测。将mhPSCs悬液注射在成年雄性裸鼠腹股沟皮下.注射30d时,取出移植物,采用SP法进行免疫组织化学反应,以检测mhPSCs的体内自然分化潜能。体外扩增培养,mhPSCs贴壁生长,呈多角形上皮样。生长至单层.呈“铺路石”状。体外定向诱导,细胞逐渐由多角形变成圆形,并聚集成类胰岛。诱导培养15d时.形成的类胰岛中少数细胞分化为B细胞,双硫腙染色阳性。诱导培养25d时,多数细胞分化为8细胞,双硫腙染色阳性,转录表达胰岛素的mRNA。用不同浓度葡萄糖刺激.诱导胰岛不仅释放胰岛素和C肽,而且其释放量随糖刺激浓度升高显著增加(0.01〈P〈0.05)。体内分化实验显示,mhPSCs在裸鼠背部形成类畸胎瘤。类畸胎瘤易与裸鼠分离,色白,血管丰富。显著表达pdx1、胰岛素、胰高血糖素、CK、MBP及NF蛋白。该研究结果证实单克隆人胰腺干细胞系体外定向诱导分化为包含大量β细胞的功能性类胰岛,在体内自然分化为胰岛、上皮及神经组织细胞。  相似文献   

2.
Nestin-expressing cells in the pancreatic islets of Langerhans   总被引:31,自引:0,他引:31  
The pancreatic islets of Langerhans produce several peptide hormones, predominantly the metabolically active hormones insulin and glucagon, which are critical for maintaining normal fuel homeostasis. Some evidence exists that pancreatic endocrine cells turn over at a slow rate and can regenerate in certain conditions. This could be due to the presence of pluripotent cells residing in the pancreas. Recently the intermediate filament protein nestin has been identified to be a marker for a multipotent stem cell in the central nervous system. Given the similarity between the pancreatic islets and neuronal cells, we hypothesized that stem cells expressing nestin might be present in the pancreas. Here we present evidence that a subset of cells in the pancreatic islets express the stem cell marker nestin. These cells might serve as precursors of differentiated pancreatic endocrine cells.  相似文献   

3.
4.
5.
Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients.  相似文献   

6.
The pdx1 gene is essential for pancreatic organogenesis in humans and mice; pdx1 mutations have been identified in human diabetic patients. Specific inactivation of pdx1 in adult beta cells revealed that this gene is required for maintenance of mature beta cell function. In the following study, a Cre-lox strategy was used to remove pdx1 function specifically from embryonic beta cells beginning at late-gestation, prior to islet formation. Animals in which pdx1 is lost in insulin-producing cells during embryogenesis had elevated blood glucose levels at birth and were overtly diabetic by weaning. Neonatal and adult mutant islets showed a dramatic reduction in the number of insulin(+) cells and an increase in both glucagon(+) and somatostatin(+) cells. Lineage tracing revealed that excess glucagon(+) and somatostatin(+) cells did not arise by interconversion of endocrine cell types. Examination of mutant islets revealed a decrease in proliferation of insulin-producing cells just before birth and a concomitant increase in proliferation of glucagon-producing cells. We propose that pdx1 is required for proliferation and function of the beta cells generated at late gestation, and that one function of normal beta cells is to inhibit the proliferation of other islet cell types, resulting in the appropriate numbers of the different endocrine cell types.  相似文献   

7.
Recent studies on the identification of stem/progenitor cells within adult mouse and human pancreatic islets have raised the possibility that autologous transplantation might be used in treating type 1 diabetes. However, it is not yet known whether such stem/progenitor cells are impaired in type 1 diabetic patients or diabetic animal models. The latter would also allow us to test the efficacy of autologous transplantation in large animal models prior to clinical applications. The present study aims to determine the existence of stem/progenitor cells in the islets of diabetic monkey models and to assess the proliferation and differentiation potential of such cells in vitro. Our results indicate that there are pancreatic progenitor cells in the adult pancreatic islets in both normal and type 1 diabetic monkeys. The isolated pancreatic progenitor cells can be greatly expanded in culture. Upon the removal of growth medium, these cells spontaneously form islet-like cell clusters, which could be further induced to secrete insulin by inductive factors. Furthermore, the secretion of insulin and C-peptide from the islet-like cell clusters responds to glucose and other stimuli, indicating that the differentiated cells not only resemble beta-cells but also possess the unique biological function of beta-cells. This study provides a foundation for further characterization of adult pancreatic progenitor cells and autologous transplantation using pancreatic progenitor cells in treating diabetic monkeys.  相似文献   

8.
To better understand the relationship between the endocrine and exocrine cell types in the Xenopus pancreas, we have cloned the Xenopus amylase cDNA and compared its expression profile with that of four other pancreatic markers: insulin, glucagon, elastase and trypsinogen. Our results demonstrate that the first pancreatic marker to be expressed is insulin, exclusively in the dorsal pancreas. These insulin-expressing cells form small groups which resemble islets, but no insulin is detected in the ventral pancreas until stage 47. In contrast, the exocrine markers, amylase, elastase and trypsinogen are first expressed only in the ventral pancreas beginning at stage 41; by stage 45 their expression extends into the dorsal pancreas. Glucagon, on the other hand, is not expressed in the pancreas until stage 45. In the endocrine cell clusters we do not find glucagon-expressing cells surrounding insulin-expressing cells, either in the tadpole or in the mature frog pancreas.  相似文献   

9.
During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural stem cells. Within developing pancreatic epithelium, nestin is co-expressed with pdx1 and p48, but not ngn3. Epithelial nestin expression is extinguished upon differentiation of endocrine and exocrine cell types, and no nestin-positive epithelial cells are observed by E15.5. In E10.5 dorsal bud explants, activation of EGF signaling results in maintenance of undifferentiated nestin-positive precursors at the expense of differentiated acinar cells, suggesting a precursor/progeny relationship between these cell types. This relationship was confirmed by rigorous lineage tracing studies using nestin regulatory elements to drive Cre-mediated labeling of nestin-positive precursor cells and their progeny. These experiments demonstrate that a nestin promoter/enhancer element containing the second intron of the mouse nestin locus is active in undifferentiated E10.5 pancreatic epithelial cells, and that these nestin-positive precursors contribute to the generation of differentiated acinar cells. As in neural tissue, nestin-positive cells act as epithelial progenitors during pancreatic development, and may be regulated by EGF receptor activity.  相似文献   

10.
11.
Summary Ablation, transplantation and culture experiments were used to determine the respective roles of the pancreatic dorsal and ventral anlagen in the formation of the endocrine cells. Three successive waves of endocrine formation occur in the pancreas of Bufo bufo at three developmental stages (III6, IV1 and IV2). Each wave is derived from a different source: the first originates from the dorsal anlage, the second from the exocrine tissue of the cortex of the pancreas and the third from the pancreatic duct. Each generation of islets has a specific composition of different cell types. The first wave is only composed of insulin islets; the second wave gives rise to single insulin, glucagon and somatostatin cells; while the third wave generates single cells synthesizing one of the three hormones, homogeneous islets of insulin cells, rare glucagon islets and heterogeneous islets containing insulin cells in the centre and a few glucagon or somatostatin cells at the periphery.  相似文献   

12.
13.
hESC (human embryonic stem cells), when differentiated into pancreatic β ILC (islet‐like clusters), have enormous potential for the cell transplantation therapy for Type 1 diabetes. We have developed a five‐step protocol in which the EBs (embryoid bodies) were first differentiated into definitive endoderm and subsequently into pancreatic lineage followed by formation of functional endocrine β islets, which were finally matured efficiently under 3D conditions. The conventional cytokines activin A and RA (retinoic acid) were used initially to obtain definitive endoderm. In the last step, ILC were further matured under 3D conditions using amino acid rich media (CMRL media) supplemented with anti‐hyperglycaemic hormone‐Glp1 (glucagon‐like peptide 1) analogue Liraglutide with prolonged t½ and Exendin 4. The differentiated islet‐like 3D clusters expressed bonafide mature and functional β‐cell markers‐PDX1 (pancreatic and duodenal homoeobox‐1), C‐peptide, insulin and MafA. Insulin synthesis de novo was confirmed by C‐peptide ELISA of culture supernatant in response to varying concentrations of glucose as well as agonist and antagonist of functional 3D β islet cells in vitro. Our results indicate the presence of almost 65% of insulin producing cells in 3D clusters. The cells were also found to ameliorate hyperglycaemia in STZ (streptozotocin) induced diabetic NOD/SCID (non‐obese diabetic/severe combined immunodeficiency) mouse up to 96 days of transplantation. This protocol provides a basis for 3D in vitro generation of long‐term in vivo functionally viable islets from hESC.  相似文献   

14.
Using a flow cytometry-based screen of commercial antibodies, we have identified cell-surface markers for the separation of pancreatic cell types derived from human embryonic stem (hES) cells. We show enrichment of pancreatic endoderm cells using CD142 and of endocrine cells using CD200 and CD318. After transplantation into mice, enriched pancreatic endoderm cells give rise to all the pancreatic lineages, including functional insulin-producing cells, demonstrating that they are pancreatic progenitors. In contrast, implanted, enriched polyhormonal endocrine cells principally give rise to glucagon cells. These antibodies will aid investigations that use pancreatic cells generated from pluripotent stem cells to study diabetes and pancreas biology.  相似文献   

15.
The insulin receptor (IR) and its signaling appear to be essential for insulin secretion from pancreatic beta-cells. However, much less is known about the role of the IR in alpha-cells. To assess the role of the IR in glucagon and insulin secretion, we engineered adeno-viruses for high efficiency small interference RNA (siRNA)-IR expression in isolated mouse pancreatic islets and lentiviruses for siRNA-IR expression in pancreatic alpha- and beta-cell lines (alpha-TC6 and MIN6) with specific, long term stable IR knockdown. Western blot analysis showed that these strategies resulted in 60-80% reduction of IR protein in islets and alpha- and beta-cell lines. Cell growth was reduced by 35-50% in alpha-TC and MIN6 cells stably expressing siRNA-IR, respectively. Importantly, glucagon secretion, in response to glucose (25 to 2.8 mm), was completely abolished in islets expressing siRNA-IR, whereas secretion increased 1.7-fold in islets expressing control siRNA. In contrast, there was no difference in glucose-stimulated insulin secretion when comparing siRNA-IR and siRNA control, with both groups showing a 1.7-fold increase. Islet glucagon and insulin content were also unaffected by IR knockdown. To further explore the role of the IR, siRNA-IR was stably expressed in pancreatic cell lines, which dramatically suppressed glucose-regulated glucagon secretion in alpha-TC6 cells (3.4-fold) but did not affect GSIS in MIN6 cells. Defects in siRNA-IR-expressing alpha-cells were associated with an alteration in the activity of Akt and p70S6K where insulin-induced phosphorylation of protein kinase B/AKt was greatly reduced while p70S6K activation was enhanced, suggesting that the related pathways play important roles in alpha cell function. This study provides direct evidence that appropriate expression of the IR in alpha-cells is required for glucose-dependent glucagon secretion.  相似文献   

16.
Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.  相似文献   

17.
18.
We generated pdx1(PB)CreERtrade mark transgenic mice in which a pancreatic endocrine-specific enhancer (pdx1(PB)) drives expression of a tamoxifen (TM)-inducible Cre recombinase/estrogen receptor fusion protein. We previously showed that this enhancer directs expression to immature endocrine cells as well as postnatal islets. This transgene provides spatial and temporal control of gene inactivation in pancreatic islets. Three transgenic lines were generated and crossed with R26R mice to assess recombination efficiency. TM-dependent lacZ expression was observed in islets from all three lines. One line was chosen for further study based on its strong islet-specific recombination in embryos and adults. In this line, a dose-dependent increase in recombination efficiency was observed in endocrine cells. Our data suggest that this transgenic line will be a valuable tool to inactivate genes in pancreatic endocrine cells during development or in the adult. The dose-dependent nature of recombination suggests a potential use for this line in the generation of genetic mosaic animals.  相似文献   

19.
The disease diabetes mellitus arises as a consequence of a failure of the beta-cells in the islets of Langerhans of the pancreas to produce insulin in the amounts required to meet the needs of the body. Whole pancreas or islet transplants in patients with severe diabetes effectively restore insulin production. A lack of availability of donor pancreata requires the development of alternative sources of islets such as the ex vivo culture and differentiation of stem/progenitor cells. Earlier we discovered multipotential progenitor cells in islets isolated from adult human pancreata that express the neural stem cell marker nestin: nestin-positive islet-derived progenitor cells (NIPs). Recently it was shown that the exclusion of the Hoechst 33342 dye, which defines the pluripotential side population (SP) of hematopoietic stem cells, is mediated by the ATP-binding cassette transporter, ABCG2. Here we report that the human islet-derived NIPs contain a substantial subpopulation of SP cells that co-express ABCG2, MDR1, and nestin. Thus NIPs may be a potential source of adult pluripotential stem/progenitor cells useful for the production of islet tissue for transplantation into diabetic subjects.  相似文献   

20.
We used transgenesis to explore the requirement for downregulation of hepatocyte nuclear factor 6 (HNF6) expression in the assembly, differentiation, and function of pancreatic islets. In vivo, HNF6 expression becomes downregulated in pancreatic endocrine cells at 18. 5 days post coitum (d.p.c.), when definitive islets first begin to organize. We used an islet-specific regulatory element (pdx1(PB)) from pancreatic/duodenal homeobox (pdx1) gene to maintain HNF6 expression in endocrine cells beyond 18.5 d.p.c. Transgenic animals were diabetic. HNF6-overexpressing islets were hyperplastic and remained very close to the pancreatic ducts. Strikingly, alpha, delta, and PP cells were increased in number and abnormally intermingled with islet beta cells. Although several mature beta cell markers were expressed in beta cells of transgenic islets, the glucose transporter GLUT2 was absent or severely reduced. As glucose uptake/metabolism is essential for insulin secretion, decreased GLUT2 may contribute to the etiology of diabetes in pdx1(PB)-HNF6 transgenics. Concordantly, blood insulin was not raised by glucose challenge, suggesting profound beta cell dysfunction. Thus, we have shown that HNF6 downregulation during islet ontogeny is critical to normal pancreas formation and function: continued expression impairs the clustering of endocrine cells and their separation from the ductal epithelium, disrupts the spatial organization of endocrine cell types within the islet, and severely compromises beta cell physiology, leading to overt diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号