首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agrobacteria mediated Coleus blumei tumour tissues were cultured in vitro on MS medium. Sixteen diversified transformed callus cultures were maintained for several years in the absence of plant growth regulators and antibiotics without affecting the growth rate. Rosmarinic acid was detected spectrophotometrically in all tissue lines but in different quantities. The highest rosmarinic acid accumulation detected was 11% of dry tissue mass. The relation between culture growth and rosmarinic acid production was investigated in three callus lines. The lines showed different rosmarinic acid accumulation in relation to their growth rate; it was either parallel or inversely related to the tissue growth. The effects of certain medium constituents on the callus growth and rosmarinic acid accumulation were examined in four tumour cell lines. Addition of 4% or 5% sucrose stimulated rosmarinic acid synthesis and decreased callus growth. Nitrogen reduction to one half or one quarter of initial concentration did not affect rosmarinic acid synthesis and decreased callus growth in three lines, while it increased rosmarinic acid accumulation and callus growth in one line. Addition of 0.1 mg/l Phe stimulated rosmarinic acid production in two lines but had little effect on the rosmarinic acid level in others. Rosmarinic acid production was significantly improved on modified macronutrients, where the Ac2 line produced 16.5 mg of rosmarinic acid per tube (0.2 g of dry wt) after being in culture for 35 days.  相似文献   

2.
Vitamin A (retinol) and five retinoids were tested for their ability to enhance epidermal growth factor (EGF) stimulation of adult human skin fibroblast growth in vitro. The retinoids utilized in this study were RO-1-5488 (all-trans-retinoic acid), RO-4-3780 (13-cis-retinoic acid), RO-10-9359, RO-10-1670, and RO-21-6583. Retinol and each retinoid were capable of stimulating fibroblast growth alone (0-86%), while 13-cis and all-trans-retinoic acid were the most potent in potentiating the EGF promotion of fibroblast growth. Other growth factors tested in addition to EGF were nerve growth factor (NGF), fibroblast growth factor (FGF), and thrombin. While EGF and FGF stimulated fibroblast growth to the same degree (2.3-fold), only growth stimulated by EGF was potentiated by retinoic acid. Since retinoic acid might enhance the EGF stimulation of cell growth by increasing either EGF receptor number or binding affinity, the binding of 125I-labeled EGF was carried out in the presence of retinoic acid and the data were subjected to a Scatchard-type analysis. No change in EGF receptor number or affinity was seen in the presence of retinoic acid. The data indicate a specific interaction between retinoid acid and EGF which results in the potentiation of the EGF-stimulated cell growth. Furthermore, the mechanism of this interaction does not seem to involve the initial binding of EGF to its plasma membrane receptor or the available number of EGF receptors located on the cell surface.  相似文献   

3.
不同pH的酚酸溶液对杉木及萝卜幼苗生长的影响   总被引:3,自引:0,他引:3  
通过四因素五水平的二次回归正交旋转试验设计 ,研究 pH值、肉桂酸、对羟基苯甲酸、香草醛四个因素对杉木和萝卜幼苗生长的影响。结果表明 ,杉木幼苗的鲜重生长随酚酸溶液的pH值的增大而增加 ,而随肉桂酸、对羟基苯甲酸和香草醛浓度的增大而减小。比较 3种不同酚类物质对杉木幼苗生长的影响 ,肉桂酸对杉木幼苗生长的影响 >对羟基苯甲酸 >香草醛 ,且 pH值与肉桂酸之间 ;肉桂酸与香草醛之间 ;对羟基苯甲酸与香草醛之间的交互作用都达到显著水平。萝卜幼苗生长对不同pH的酚酸溶液的反应与杉木幼苗相类似 ,随酚酸溶液的pH值的增大而增加 ,而随肉桂酸、对羟基苯甲酸和香草醛浓度的增大而减小。但对羟基苯甲酸对萝卜幼苗生长的影响 >肉桂酸 >香草醛 ,酚酸溶液的 pH值与所有 3种酚酸之间的交互作用都达到显著水平 ;肉桂酸与香草醛的交互作用对萝卜幼苗生长的影响也达到F0 0 1水平显著。  相似文献   

4.
Biological Control of Phytopathogenic Fungi by Fatty Acids   总被引:1,自引:0,他引:1  
Liu S  Ruan W  Li J  Xu H  Wang J  Gao Y  Wang J 《Mycopathologia》2008,166(2):93-102
The aim of the present study was to evaluate the antifungal activity of fatty acids against phytopathogenic fungi. Two pot experiments were conducted by mixing palmitic and oleic acids in the soil in which poor plant growth was observed. In addition, the antifungal activities of nine fatty acids (butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and linoleic acid) against four phytopathogenic fungi: Alternaria solani, Colletotrichum lagenarium, Fusarium oxysporum f. sp. Cucumerinum, and Fusarium oxysporum f. sp. lycopersici, were assessed by measuring mycelial growth and spore germination via Petri dish assay. The results of the pot experiments showed that the mixture of palmitic and oleic acids enhanced the growth of the seedlings of continuous-tomato and continuous-cucumber. Except for oleic acid, in the Petri dish assay, the fatty acids tested were observed to inhibit the mycelial growth of one or more tested fungi. In addition to the suppression of mycelial growth, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, and palmitic acid showed an inhibitory effect against spore germination and the extent of inhibition varied with both the type of fatty acids, and the fungi. In particular, capric acid displayed strong inhibitory effect against C. lagenarium on the mycelial growth and spore germination. The saturated fatty acids, i.e. palmitic acids, showed stronger antifungal activity than the unsaturated fatty acids, i.e. oleic acid. It suggests that fatty acids might be applicable to exploring for alternative approaches to integrated control of phytopathogens.  相似文献   

5.
Compounds structurally related to lysine were tested against Penicillium chrysogenum Wis. 54-1255 for inhibition of growth, sporulation, and penicillin formation. This strain is relatively resistant to lysine analogs. The compounds that were the more active inhibitors of growth and whose activities were reversed by L-lysine were diaminohexynoic acid, N-epsilon-methyllysine, N-alpha-methyllysine, and diaminopimelic acid. These four compounds also inhibited sporulation, which was more sensitive to inhibition than growth was. Analogs strongly inhibiting benzyl-penicillin formation by resting mycelia were diaminohexynoic acid and N-epsilon-methyllysine. The action of the most active analog (diaminohexynoic acid) on penicillin synthesis was reversed by DL-alpha-aminoadipic acid.  相似文献   

6.
Compounds structurally related to lysine were tested against Penicillium chrysogenum Wis. 54-1255 for inhibition of growth, sporulation, and penicillin formation. This strain is relatively resistant to lysine analogs. The compounds that were the more active inhibitors of growth and whose activities were reversed by L-lysine were diaminohexynoic acid, N-epsilon-methyllysine, N-alpha-methyllysine, and diaminopimelic acid. These four compounds also inhibited sporulation, which was more sensitive to inhibition than growth was. Analogs strongly inhibiting benzyl-penicillin formation by resting mycelia were diaminohexynoic acid and N-epsilon-methyllysine. The action of the most active analog (diaminohexynoic acid) on penicillin synthesis was reversed by DL-alpha-aminoadipic acid.  相似文献   

7.
提出了在恒定不同pH的发酵条件下,乳酸链球菌SM526的菌体生长、底物消耗、乳酸及Nisin产生的动力学模型。菌体生长、乳酸及Nisin产生用逻辑方程描述,而底物消耗是菌体生长和乳酸产生速率的函数。模型表明,乳酸链球菌SM526菌体生长和乳酸产生的最佳pH为7.0,而Nisin产生的最佳pH却为6.5。  相似文献   

8.
SYNOPSIS. Axenically cultivated Paramecium aurelia , stock 299, required a fatty acid for growth. This need was satisfied by oleic acid and oleic acid-containing lipids. These included: TEM-4T (tartaric acid esters of tallow monoglycerides), certain phospholipids (crude as well as highly purified preparations), Tween 80, 85, Span 80 and glyceryl monoleate. High concentrations of oleic acid in the medium inhibited growth. This inhibition was partially released or annulled by certain mixtures of "non essential" fatty acids or by increasing the stigmasterol content of the growth medium. Definite but non-stoichiometric levels of oleic acid and sterol were required for optimal growth. Tween 60, a non-ionic emulsifier similar in its surfactant properties to Tween 80, stimulated growth in the presence of suboptimal amounts of oleic acid but failed itself to replace oleic acid as a growth requirement.  相似文献   

9.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

10.
AIMS: The purpose of this work was to study the effect of L-aspartic acid concentration on bacterial growth, D-glucose fermentation and L-malic acid consumption of Oenococcus oeni NCFB 1707. METHODS AND RESULTS: Bacterial cultures were performed in synthetic media. Bacterial growth, D-glucose fermentation and L-malic acid consumption were reduced when L-aspartic acid concentration became excessive. This inhibitory effect of high concentrations of L-aspartic acid on bacterial growth was also observed with several Oenococcus oeni strains, except O. oeni BL01. The L-aspartic acid inhibitory effect on bacterial growth could be reduced by increasing the concentration of L-glutamic acid. L-glutamic acid transport was found to be competitively inhibited by L-aspartic acid. In addition, an excessive amount of L-aspartic acid modified D-glucose metabolism, with an overproduction of acetic acid and reduced ethanol production. CONCLUSION: Since L-glutamic acid is an essential amino acid for the bacterial strain used, the L-aspartic acid inhibitory effect on bacterial growth could be linked to its involvement in an antagonistic interaction with L-glutamic acid. SIGNIFICANCE AND IMPACT OF THE STUDY: Such antagonistic interactions between amino acids in O. oeni strains could be another explanation for the difficulties of inducing malolactic fermentation in wines.  相似文献   

11.
The growth and metabolism of the live vaccine strain of Pasteurella tularensis in different media were investigated. Maximal growth was observed in a medium containing a sulfuric acid digest of casein as amino acid source. Amino acid metabolism produced considerable ammonia, and the rate of ammonia evolution was directly proportional to the growth rate. The most likely route for amino acid breakdown is nonspecific oxidative deamination.  相似文献   

12.
Experiments, relevant to growth in milk, were done to delineate the aerobic and anaerobic growth of Listeria species on selected sugars in several media. All species grew on glucose aerobically, forming lactic acid and (or) acetic acid. Anaerobically, only lactic acid was formed; cell yields were 80% of those obtained aerobically. When incubated aerobically, small amounts (1.5 microns/mL) of isovaleric acid, 2-hydroxyisovaleric acid, and trace amounts of isobutyric acid were formed. These products were characteristically formed by 26 strains representing all the species of Listeria. Added leucine stimulated isovaleric acid formation. Anaerobic fermentations of glucose could be followed by 60 to 80% cell lysis; less lysis occurred in air. Anaerobically, only hexoses and pentoses supported growth; aerobically, maltose and lactose supported growth of some strains, but sucrose did not support growth of any strain tested. Listeria grayi and Listeria murrayi utilized the galactose and glucose moieties of lactose for growth; Listeria monocytogenes and Listeria innocua used only the glucose moiety. Glucosamine and N-acetylglucosamine supported aerobic and anaerobic growth as well as glucose, and their presence stimulated the utilization of lactose by "lactose-negative" strains. Analyses of cultures grown at 5 degrees C in sterile milk treated with glucose oxidase supported the conclusion that the glucose of the milk was the major, if not the limiting, substrate that supported growth.  相似文献   

13.
The ratios of satellite deoxyribonucleic acid components to chromosomal deoxyribonucleic acid in Euglena gracilis Z were measured by analytical density gradient ultracentrifugation. Chloroplast deoxyribonucleic acid with a buoyant density of 1.685 g/cm3 exhibited a constant ratio to chromosomal deoxyribonucleic acid during exponential growth and increased twofold as the culture reached the end of the exponential growth phase. The quantity of a satellite deoxyribonucleic acid with a buoyant density of 1.691 g/cm3 was not sufficient to measure the ratio to chromosomal deoxyribonucleic acid during exponential growth but increased to approximately equal the quantity of chloroplast deoxyribonucleic acid as the culture approached the end of the exponential growth phase. The quantity of a deoxyribonucleic acid component with a buoyant density of 1.700 g/cm3 was not sufficient to measure the ratio to chromosomal deoxyribonucleic acid during exponential growth but represented approximately one-third of the total deoxyribonucleic acid as the culture entered the stationary phase of growth.  相似文献   

14.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

15.
The aim of this work was to investigate the relationship between amino acid requirements and peptidase enzyme systems in three Streptococcus salivarius subsp. thermophilus strains. A synthetic medium without nitrogen components and a milk (RD milk) without its non-protein nitrogen fraction were prepared with different mixtures of amino acids. The strains showed different amino acid requirements. Some amino acids proved to be essential, some were required, while others did not affect growth. In the synthetic medium, only leucine and glutamic acid were essential for growth. In RD milk, the amino acid requirements were found to be lower, with only the absence of glutamic acid causing complete inhibition of growth. Relationships between aminopeptidase activities of the strains and their amino acid requirements were observed. Strains with higher amino acid requirements were also found to express a wider range of peptidases.  相似文献   

16.
微量热法研究传统中药板蓝根中四种有机酸对大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的影响。得到加药与不加药时大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的“效-时”曲线, 以生长速率常数(k1, k2)、最大产热功率(Pm)和最大达峰时间(tm)等热力学参数来评价四种有机酸对微生物生长代谢抑制的强度和程度。四种有机酸抗微生物活性作用的顺序为: 丁香酸>邻氨基苯甲酸>水杨酸>苯甲酸, 其中苯甲酸对金黄色葡萄球菌和痢疾杆菌的生长代谢具有促进作用。本研究对板蓝根的进一步研究提供了基础和依据。  相似文献   

17.
Batch propionic acid fermentation of lactose by Propionibacterium acidipropionici were studied at various pH values ranging from 4.5 to 7.12. The optimum pH range for cell growth was between 6.0 and 7.1, where the specific growth rate was approximately 0.23 h(-1). The specific growth rate decreased with the pH in the acids have been identified as the two major fermentation products from lactose. The production of propionic acid was both growth and nongrowth associated, while acetic acid formation was closely associated with cell growth. The propionic acid yield increased with decreasing pH; It changed from approximately 33% (w/w) at pH 6.1-7.1 to approximately 63% at pH 4.5-5.0. In contrast, the acetic acid yield was not significantly affected by the pH; it remained within the range of 9%-12% at all pH values. Significant amounts of succinic and pyruvic acids were also formed during propionic acid fermentation of lactose. However, pyruvic acid was reconsumed and disappeared toward the end of the fermentation. The succinic acid yield generally decreased with the pH, from a high value of 17% at pH 7.0 to a low 8% at pH 5.0 Effects of growth nutrients present in yeast ex-tract on the fermentation were also studied. In general, the same trend of pH effects was found for fermentations with media containing 5 to 10 g/L yeast extract. However, More growth nutrients would be required for fermentations to be carried out efficienytly at acidic pH levels.  相似文献   

18.
微量热法研究传统中药板蓝根中四种有机酸对大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的影响。得到加药与不加药时大肠杆菌、金黄色葡萄球菌和痢疾杆菌生长代谢的“效-时”曲线, 以生长速率常数(k1, k2)、最大产热功率(Pm)和最大达峰时间(tm)等热力学参数来评价四种有机酸对微生物生长代谢抑制的强度和程度。四种有机酸抗微生物活性作用的顺序为: 丁香酸>邻氨基苯甲酸>水杨酸>苯甲酸, 其中苯甲酸对金黄色葡萄球菌和痢疾杆菌的生长代谢具有促进作用。本研究对板蓝根的进一步研究提供了基础和依据。  相似文献   

19.
Summary The effects of acetic acid and specific growth rate on acetic acid tolerance and trehalose content of Saccharomyces cerevisiae CBS 2806 were studied using anaerobic chemostat cultures. Cells grown in the presence of acetic acid at a defined specific growth rate showed a higher acetic acid tolerance and a slightly lower trehalose content. Cells grown at a low specific growth rate showed a lower energy demand, a higher acetic acid tolerance, and a higher trehalose content. These results indicate that trehalose plays a growth rate dependent role in the tolerance of S. cerevisiae to acetic acid.  相似文献   

20.
The acidic hydrolysis of biomass generates numerous inhibitors of fermentation, which adversely affect cell growth and metabolism. The goal of the present study was to determine the effects of fermentation inhibitors on growth and glucose consumption by Saccharomyces cerevisiae. We also conducted in situ adsorption during cell cultivation in synthetic broth containing fermentation inhibitors. In order to evaluate the effect of in situ adsorption on cell growth, five inhibitors, namely 5-hydroxymethylfurfural, levulinic acid, furfural, formic acid, and acetic acid, were introduced into synthetic broth. The existence of fermentation inhibitors during cell culture adversely affects cell growth and sugar consumption. Furfural, formic acid, and acetic acid were the most potent inhibitors in our culture system. The in situ adsorption of inhibitors by the addition of activated charcoal to the synthetic broth increased cell growth and sugar consumption. Our results indicate that detoxification of fermentation media by in situ adsorption may be useful for enhancing biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号