首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Summary The effects of increasing concentrations of NaCl and CaCl2 on quince (Cydonia oblonga Mill. BA 29 clone) somatic embryogenesis and adventitious root regeneration were investigated. Leaves collected from in vitro-grown shoots were used as explants and induced for 2d in liquid Murashige and Skoog medium containing 11.3 μM 2,4-dichlorophenoxyacetic acid. Explants were then cultured on semisolid Murashige and Skoog medium enriched with 4.7 μM kinetin and 0.5 μM naphthaleneacetic acid under red light for 25 d and under white light for another 25 d. Two experiments were performed: in the first, NaCl was used at 0,25, 50, 100, and 200 mM in factorial combination with CaCl2 at 3, 9, and 27 mM; in the second, NaCl was applied at 0, 5, 10, 20, 40, and 80 mM in combination with CaCl2 at 0.3, 1.0, and 3.0 mM. Quince leaves revealed the capacity to regenerate somatic embryos and/or adventitious roots. Quantitative and qualitative regeneration from leaves was affected by NaCl treatments: increasing NaCl concentrations, in combination with CaCl2 at 1 mM, led to an increase in the proportion of leaves producing somatic embryos only, and to a decrease of both leaves regenerating roots only and leaves simultaneously producing somatic embryos and adventitious roots. This suggests a beneficial effect of salt stress on the embryogenic process. The regeneration response decreased with increasing salt concentrations and was almost totally inhibited above 50 mM NaCl and 9 mM CaCl2. The presence of CaCl2 in the culture medium apparently mitigated the effects of salt stress, but only when NaCl was applied at 40 mM. NaCl at 5 mM, in the presence of 0.3 or 1 mM CaCl2, was favorable both to somatic embryo and root production. No value of the ratio Na+/Ca2+ was found to be optimal for the regeneration processes.  相似文献   

2.
Summary Triticum aestivum cv. Chinese Spring wheat,Elytrigia elongatum (tall wheatgrass), and theTriticum-Elytrigia amphiploid were grown in complete nutrient culture containing, in addition, 0, 40, 80 and 120 mM NaCl. The 3 genotypes responded quite differently to increasing salinity; the Na concentration of wheat shoots increased in direct proportion to the increase in salinity of the external medium whereas the Elytrigia response was interpreted as showing high affinity for Na at low external Na (40 mM) but comparative exclusion of Na at high salinities (120 mM). In contrast, Na levels of the amphiploid were less than those of either wheat or Elytrigia under both low and high salinities. Thus the amphiploid behaved like wheat at 40 mM NaCl but more like Elytrigia at 120 mM NaCl because Na transport to the amphiploid shoot was restricted over the whole salinity range. The K concentration of the amphiploid shoot at high salinities was significantly greater than the K concentrations of either wheat or Elytrigia.  相似文献   

3.
Summary The effects of NaCl and CaCl2 on shoot regeneration from quince (Cydonia oblonga BA L29 clone) leaves were investigated. Caulogenesis was induced on in vitro-grown leaves treated for 2d in liquid Murashige and Skoog (MS) medium with 11.3 μM 2,4-dichlorophenoxyacetic acid and cultured on MS gelled medium supplemented with 4.5 μM thidiazuron and 0.5 μM naphthaleneacetic acid. Three experiments were performed: in the first, we compared the effects of NaCl at 0, 25, 50, 100, and 200 mM in factorial combination with 3, 9, and 27 mM CaCl2. In the second, NaCl was tested at 0, 5, 10, 20, 40, and 80 mM with CaCl2 at 0.3, 1.0, and 3.0 mM. The third experiment was carried out with the same experimental design as the second one but replacing NaCl with Na2SO4. Shoot regeneration was evaluated after 50 d of culturing: 25 in darkness and 25 in white light. In the first experiment, shoot regeneration was very poor and was observed only at the lower salt concentrations. In the second experiment, the percentages of caulogenic leaves were much higher, but decreased with increasing NaCl concentration. The more pronounced negative effect of the highest NaCl concentrations appeared to be partly mitigated by CaCl2 at 1 and 3 mM. The presence of 3 mM CaCl2, in the experiment with Na2SO4, appeared to be even more effective in reducing the adverse effect of sodium stress on caulogenesis. This result was attributed to the lower Cl concentration in the growth medium, which resulted from replacing NaCl with Na2SO4. NaCl applied at low concentrations (5 and 10 mM) in combination with 3 mM CaCl2 exerted a favorable effect on adventitious shoot regeneration. As regards the Na+ and Ca2+ interaction, when the Na+/Ca2+ ratio was below roughly 35 and 20, with NaCl and Na2SO4, respectively, at least 60% of leaves showed regenerating capacity, but optimal values of this ratio were not derived.  相似文献   

4.
Lipid composition of the roots and the shoot of the salt-sensitive Plantago media L., the salt-tolerant P. maritima L. and the less salt-tolerant P. coronopus L. was followed under saline conditions. In the roots of P. media the level of phospho-, galacto- and sulpholipids decreased strongly with increased NaCl concentration, indicating decreased control of permeability of the root cell membranes. In the roots of the two salt-tolerant species the level of most lipid classes was maintained or even raised up to 75 mM NaCl, and a decrease was noted only at higher NaCl concentrations. In P. maritima, a species from relatively nutrient-rich habitats, decreased lipid levels in the roots and shoot were observed with increasing salinity in combination with a low nutrient availability. The Ca2+- and Mg2+-stimulated ATPase activities of the microsomal fraction of the roots of P. maritima was decreased at a salinity level in excess of 150 mM, while in P. coronopus they were decreased at all NaCl levels tested. The obtained results are discussed as part of the adaptation of the species to salinity.  相似文献   

5.
Plantago coronopus L., a species from the coastal zone, was grown in culture solution with and without 50 mM NaCl. In addition it was transferred from a non-saline solution to a solution containing 50 mM NaCl. Short term effects of NaCl on growth and various aspects of energy metabolism, including photosynthesis, shoot dark respiration, root respiration and the contribution of the SHAM-sensitive alternative pathway to root respiration were investigated. The concentrations of soluble and insoluble non-structural carbohydrates and of sorbitol a compatible osmotic solute in Plantago, in both shoots and roots were also determined. Growth of shoots and roots was largely unaffected by addition of 50 mM NaCl. Net photosynthesis, shoot dark respiration and the concentration of non-structural carbohydrates in both shoots and roots were also unaffected by salinity. The rate of root respiration immediately decreased upon addition of 50 mM NaCl. This decrease was almost exclusively attributed to a decreased activity of the SHAM-sensitive alternative pathway. The concentration of sorbitol in the roots increased quickly after addition of 50 mM NaCl, whilst the increase in sorbitol concentration in the shoots started later. The time course of the increase of sorbitol concentration was similar to that of the decrease in activity of the alternative pathway. During the first 12 h after exposure to 50 mM NaCl, the amount of carbohydrates which was saved in respiration, due to the decreased activity of the alternative pathway, was the same as that used for sorbitol synthesis in the roots. It is concluded that the activity of the alternative pathway decreased due to increased utilization of carbohydrates for sorbitol synthesis, according to a proposed ‘energy overflow model’. After 24 h, the sorbitol concentration in the cytoplasm of the root cells of plants transferred to a saline solution reached a level that was sufficient to compensate for 50 mM NaCl, assuming a cytoplasmic volume of ca. 10% of the total cell volume. The sorbitol concentration in roots of plants grown in a saline environment for several weeks was lower than that in roots of plants transferred to a saline environment for c. 24 h. It is suggested that sorbitol accumulated in roots of Plantago coronopus as an immediate reaction upon salinity, whilst other adaptations may occur thereafter.  相似文献   

6.
7.
Summary Variants from seed-propagated Lisianthus [Eustoma grandiflorum (Raf.) Shinn] were shoot-tip cultured to observe the effects of cytokinins, auxins and activated charcoal on organogenesis and anatomical characteristics. N6-Benzyladenine (BA) and kinetin at high concentrations (13.32–22.2 and 13.94–23.23 μM) resulted in good shoot formation but high percentages of hyperhydric shoots. Increased indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) concentrations favored root formation, while increased naphthaleneacetic acid concentration adversely affected root formation. Both shoot and root development were suppressed by activated charcoal. The highest percentage of regeneration and the largest number of glaucous shoots with an average of 15 shoots per explant after 4 wk of culture were obtained when the shoot tips were cultured on MS (Murashige and Skoog, 1962) medium supplemented with 4.44 μM BA and 1.47–4.92 μMIAA and IBA. In vitro-grown leaves had a higher number of stomata than field-grown leaves but the length and diameter of stomata showed no significant difference between the two types. Field-grown leaves had well-developed epicuticular wax layers. which were not observed on hyperhydric leaves. Hyperthydric plantlets could not survive when transplanted to soil, whereas glaucous plantlets survived in more than 80% of cases. Variation in soil type resulted in a slight difference in plantlet survival. Based on the results of our experiment, this protocol should be useful for the rapid micropropagation of lisianthus.  相似文献   

8.
Summary The objective of this study was to evaluate the ability ofHosta Golden Scepter (GS) ovary explants to generate adventitious shootsin vitro. Ovaries were transversely cut into halves and transferred to petri dishes containingHosta initiation medium supplemented with naphthaleneacetic acid (NAA) at 2.5 μM and N6-benzyladenine (BA) at 10 μM. GS produced adventitious shoots from the ovary base via organogenesis. The number of adventitious shoots regenerated from callus increased linearly with repeated subculturing on Murashige and Skoog (MS) medium supplemented with 2.5 μM NAA and 10 μM BA. The number of multiple shoots developing from callus (15.8), shoot tip (8.4), leaf (6.7), and root (4.3) occurred on MS medium supplemented with 2.5 μM NAA and 20–30 μM BA. There were significant differences in the number of shoots regenerated from shoot tips and callus on MS medium with 50 and 100 mgmyo-inositol per l. Similarly, there were significant differences in the number of axillary shoots and adventitious shoots produced with 20 g/l sucrose treatment.  相似文献   

9.
Summary A protocol has been developed for high-frequency shoot regeneration and plant establishment of Tylophora indica from petiole-derived callus. Optimal callus was developed from petiole explants on Murashige and Skoog basal medium supplemented with 10μM2,4-dichlorophenoxyacetic acid +2,5μM thidiazuron (TDZ). Adventitious shoot induction was achieved from the surface of the callus after transferring onto shoot induction medium. The highest rate (90%) of shoot multiplication was achieved on MS medium containing 2.5μM TDZ. Individual elongated shoots were rooted best on halfstrength MS medium containing 0.5μM indole-3-butyric acid (IBA). When the basal cut ends of the in vitro-regenerated shoots were dipped in 150μM IBA for 30 min followed by transplantation in plastic pots containing sterile vermiculite, a mean of 4.1 roots per shoot developed. The in vitro-raised plantlets with well-developed shoot and roots were successfully established in earthen pots containing garden soil and grown in a greenhouse with 100% survival. Four months after transfer to pots, the performance of in vitro-propagated plants of T. indica was evaluated on the basis of selected physiological parameters and compared with ex vitro plants of the same age.  相似文献   

10.
A field study tested the hypothesis that modern wheat varieties invest a lesser proportion of the total dry matter (root plus shoot) in the root system compared to old varieties. The study was carried out on a duplex soil (sand over clay) at Merredin, Western Australia in a Mediterranean type environment. We also compared the root:shoot dry matter ratios of near-isogenic lines for Rht dwarfing genes.Root:shoot ratios decreased with crop growth stage and were closely related to the developmental pattern of a variety. All varieties appeared to accumulate more dry matter into shoots after the terminal spikelet stage. For the modern variety Kulin this occurred as early as 55 days after sowing (DAS), but did not occur until 90 DAS in the old variety Purple Straw. For all varieties, root dry matter reached its maximum at anthesis, while shoot dry matter continued to increase till maturity. At anthesis there were no significant differences in shoot dry matter between varieties, but from Purple Straw to Kulin root dry matter and thus root:shoot ratio decreased.The tall and dwarf isogenic lines had similar developmental and root:shoot dry matter accumulation patterns.At anthesis, the old variety Purple Straw had significantly higher root dry matter and root length density in the top 40-cm of the profile than modern variety Kulin. There were no varietal differences in rooting depth, water extraction or water use. At maturity about 30% of the total dry matter was invested in the roots among wheat varieties. Grain yield, harvest index (HI) and water use efficiency of grain (WUEgr) increased from old to modern varieties.The reduced investment of dry matter in the root system and thus the lower root:shoot ratio from early in the growing season may partly explain the increased HI and WUEgr of modern compared to old varieties.  相似文献   

11.
Chi Lin  Chuan  Huei Kao  Ching 《Plant and Soil》2001,237(1):165-171
The relative importance of endogenous abscisic acid (ABA), as well as Na+ and Cl in NaCl-induced responses related to growth in roots of rice seedlings were investigated. The increase in ammonium, proline and H2O2 levels, and cell wall peroxidase (POD) activity has been shown to be related to NaCl-inhibited root growth of rice seedlings. Increasing concentrations of NaCl from 50 to 150 mM progressively decreased root growth and increased both Na+ and Cl. Treatment with NaCl in the presence of 4,4-diisothiocyano-2,2-disulfonic acid (DIDS, a nonpermeating amino-reactive disulfonic acid known to inhibit the uptake of Cl) had less Cl level in roots than that in the absence of DIDS, but did not affect the levels of Na+, and responses related to growth in roots. Treatment with 50 mM Na-gluconate (the anion of which is not permeable to membrane) had similar Na+ level in roots as that with 100 mM NaCl. It was found that treatment with 50 mM Na-gluconate effected growth reduction and growth-related responses in roots in the same way as 100 mM NaCl. All these results suggest that Cl is not required for NaCl-induced responses in root of rice seedlings. Endogenous ABA level showed no increase in roots of rice seedlings exposed to 150 mM NaCl. It is unlikely that ABA is associated with NaCl-inhibited root growth of rice seedlings.  相似文献   

12.
The in vitro response of kiwifruit (Actinidia deliciosa) to increasing concentrations of boron (B) and NaCl in the culture medium was studied. Kiwifruit shoot cultures were grown in vitro for 12 weeks on an MS medium containing two B concentrations (0.1 and 2 mM) combined with five NaCl concentrations (0, 10, 20, 40 and 80 mM). Kiwifruit produced the longest shoots with 2 mM B when NaCl concentration was 0--20 mM. More shoots were produced with 2 mM B for all NaCl treatments. More shoots were produced with 2 mM B and 10 and 20 mM NaCl. High B concentrations in the culture medium significantly increased shoot proliferation. Explants exhibited a moderate chlorotic appearance with 40 mM NaCl and shoots died with 80 mM NaCl. With 2 mM B, the B concentration of explants was 5--9X greater for the various NaCl treatments compared to the control. Increasing the NaCl concentration from 10 to 80 mM, resulted in higher Na and Cl concentrations in explants for all B treatments, while K and Ca concentrations decreased. Phosphorus concentration in the explants was significantly increased by increasing the NaCl concentration reaching a maximum value at 80 mM NaCl for the two B concentrations.  相似文献   

13.
Summary A method for the micropropagation of Zantedeschia albomaculata is presented using shoot tip proliferation onto Murashige and Skoog (MS) medium supplemented with different plant growth regulator concentrations and combinations. Of the four cytokinins tested, 6-benzyladenine (BA) and thidiazuron (TDZ) were found to be more effective. An optimal concentration of BA (8.87 μM) or TDZ (4.54 μM) developed an average of 3.8 and 3.2 shoots per explant, respectively, but increasing concentrations of cytokinins often led to lower proliferation rate and stunted growth. Addition of auxins to the MS medium supplemented with 8.87 μM BA slightly enhanced multiple shoot formation in the explants. Multiplication of six cultivars of Zantedeschia genus comprising different flower types and colors were tested and achieved using only one regeneration medium (MS+8.87 μMBA+2.46 μM IBA). Different MS medium strength, air temperature (15, 20, 25, and 30°C) and light quality [fluorescent, red + blue, red and blue light provided by a LED (light-emitting diode) system] were used (without phytohormone) with the aim of stimulating in vitro shoot and root development. Half-strength MS or MS and cultures maintained at 25°C were found to be equally suitable for shoot tip culture of Z. albomaculata. Shoot elongation as well as fresh and dry weight were significantly increased when cultures were kept under red or blue light.  相似文献   

14.
Summary The influence of different adjuvants, activated charcoal (AC), casein hydrolyzate (CH), coconut water (CW), polyvinylpyrrolidone (PVP), and triiodobenzoic acid (TIBA), has been assessed on the shoot production potential of the nodal explants derived from in vitro-raised male and female jojoba (Simmondsia chinensis) shoots. Nodal explants of each sex were cultured separately on Murashige and Skoog medium supplemented with different levels of AC, CW, CH, PVP, and TIBA either alone or along with optimum levels of N 6-benzyladenine (BA; 10 μM for male, 20 μM for female). Some differences in response of the explants of both the sexes have been observed in terms of (1) percentage of explants developing shoots, (2) average shoot number, and (3) average shoot length. AC alone proved beneficial for elevating morphogenic response in male as well as female explants in comparison to basal medium or media containing AC and the optimum level of BA. When used alone, CH proved inhibitory for shoot differentiation in both sexes, especially in male explants. Addition of PVP to MS enhanced shoot proliferation in female explants only, but along with BA it increased the response of male explants. BA in combination with different levels of TIBA promoted shoot multiplication in female explants. Thus, explants of both male and female shoots exhibited differential morphogenic behavior under the influence of various adjuvants. However, BA alone proved to be the best for differentiation of shoots in both male (10 μM) as well as female (20 μM) explants.  相似文献   

15.
The present investigation envisaged revealing the role of exogenous application of ascorbic acid in increasing resistance against NaCl stress. Shoot apices from 60-d-old, in vitro-grown plants of two commercially important cultivars of Solanum tuberosum L., cvs. Desiree and Cardinal, were inoculated on Murashige and Skoog (MS) medium supplemented with 0.5 mM ascorbic acid for 72 h as a pretreatment. Pretreated and non-pretreated shoot apices were transferred to MS medium containing different concentrations of NaCl (0–140 mM; eight treatments). Results were recorded for morphological (shoot length, shoot number, root length, root number, and number of nodes) and biochemical features (protein, peroxidase, catalase, and superoxide dismutase activities) after 60 d of salt treatment. Similarly, 60-d-old, well-proliferated callus cultures were also pretreated with ascorbic acid for 24 h and transferred to an optimized callus proliferation medium containing different concentrations of salt. Results were recorded after 60 d of salt treatment for percentage relative fresh weight growth and biochemical parameters. Salinity severely inhibited all the growth parameters in both the cultivars. Pretreatment with ascorbic acid to both salt-treated plants and callus cultures showed significant differences with respect to almost all of the growth and biochemical parameters studied. Protein content as well as catalase and superoxide dismutase activities increased significantly in both the cultivars, although peroxidase activity showed a decreasing trend in ascorbic acid-pretreated plants as well as callus cultures.  相似文献   

16.
The effects of NaCl (0, 50, 100, 150 and 200 mM) on growth, water relations, glycinebetaine, free proline, ion contents, stomata number and size of Kochia prostrata (L.) Schard were determined. Shoot and root fresh and dry matter, root and shoot length, relative growth rate, net assimilation rate, relative water content, water use efficiency, soluble sugars and glycinebetaine contents were not changed at low NaCl concentrations, but they were significantly decreased at 200 mM NaCl. The K+, Mg2+ and Ca2+ contents, water potential, chlorophyll a+b and carotenoides contents, and stomata number and size were reduced already at low concentrations of NaCl. In contrast, the Na+, Cl and proline contents increased several times with increasing NaCl concentration. Kochia prostrata is a salt tolerant species, the optimal growth of this plant occurred up to 150 mM NaCl. The mechanisms of salt tolerance in the plant may be balance among ion accumulation and production of glycinebetaine, proline, soluble sugars for maintenance of pressure potential.  相似文献   

17.
Growth of salt-sensitive Plantago media L. and salt-tolerant P. coronopus L. and P. maritima L. was followed under saline conditions. Growth was reduced according to the ecological features of these species: P. media was sensitive to 25 mM NaCl, while P, coronopus and P. maritima could grow in 150 mM and 300 mM NaCl, respectively. The three Plantago species accumulated Na+ in the shoot and maintained a relatively low Na+ level in the root. K+. Mg2+ and Ca2+ levels of both shoots and roots decreased with increasing salinity. The results suggest that the difference between salt-resistant and salt-sensitive species is located in the ion secretory system which is involved in the ion translocation from the root to the shoot rather than in the primary uptake process through the plasmalemma of the cortical cells.  相似文献   

18.
Rogers  M. E.  Grieve  C. M.  Shannon  M. C. 《Plant and Soil》2003,253(1):187-194
The combined effect of NaCl and P on the growth of lucerne was studied in two hydroponic greenhouse experiments. NaCl concentrations were identical in each experiment (0, 50 and 100 mM NaCl) while external P concentrations were low (viz. 0.002, 0.02 and 0.2 mM measured as 0.006, 0.026 and 0.2 mM, respectively) in one experiment and higher (0.5 and 5.0 mM) in the second. Plant biomass was reduced more by the low P levels than by high concentrations of NaCl. A significant NaCl*P effect was found where external P concentrations were low (0.006–0.2 mM) but there was no difference in plant production between the two P concentrations of 0.5 and 5.0 mM. Shoot and root concentrations of Na and Cl increased significantly with increasing NaCl concentration in both experiments and there were some differences in the concentrations of these ions at different external P levels. At low P, NaCl had no significant effect on shoot concentrations of P; however, root P concentrations tended to decrease with increasing NaCl level. Increasing external P from 0.006 to 0.2 mM led to significant increases in P concentrations in both roots and shoots. At higher P, concentrations of P in both the shoots and the roots did not differ with external NaCl or P conditions. Our results illustrate the complex relationship that exists between NaCl and P at low P levels. We conclude that high or non-limiting concentrations of P (0.2 – 5.0 mM) do not affect lucerne's response to NaCl.  相似文献   

19.
Summary The effects of nodal explants collected at different plastochrones, use of various benzyladenine (BA) concentrations, sources of carbohydrates, and phases of the culture medium on shoot establishment and proliferation ofRosa hybrida L. andR. chinensis minima were evaluated. Higher numbers of shoots per explant were obtained fromR. hybrida cv. Carefree Beauty explants proximal to the apical meristem than those from distal nodes. However, proliferating shoots derived from plastochrones proximal to the apical meristem had a lower number of leaves/explant and were shorter than those derived from other distal plastochrones. Although shoot proliferation increased with higher BA concentration in the medium, a concentration of 4.4 μM BA was found optimum for axillary bud-break and shoot development forR. hybrida cvs. Adelaide Hoodless and Cuthert Grant. A higher shoot proliferation rate was observed forR. hybrida cv. Carefree Beauty explants grown on a medium containing 55.5 mM fructose than 58.4 mM sucrose. However, no differences were observed forR. hybrida cv. Cuthert Grant grown on a medium containing either fructose or sucrose. The mean number of shoots/explant was higher forR. chinensis minima cv. Red Sunblaze explants grown on a liquid (4.5) than on a solid medium (1.7) for the first reculture; while no significant differences between the two phases of the medium were observed for the second reculture. However, a higher mean number of shoots/explant was observed on solid-phase (4.0) than liquid-phase medium (3.4) for the third reculture. A higher mean number of leaves/shoot was obtained on a solidified medium rather than liquid medium in the first two consecutive recultures, while no differences were observed for the third reculture. Although a significant effect of BA concentration on mean number of shoots/explant was observed for Red Sunblaze nodal explants, the influence of BA concentration decreased in the two consecutive cultures for both phases of the medium. Hyperhydricity was observed on Red Sunblaze shoots grown on the liquid-phase medium.  相似文献   

20.
Grafting onto salt‐tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na+ to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na+ in salt‐tolerant pumpkin and salt‐sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion‐selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na+, and a correspondingly increased H+ influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na+/H+ exchange in the root was inhibited by amiloride (a Na+/H+ antiporter inhibitor) or vanadate [a plasma membrane (PM) H+‐ATPase inhibitor], indicating that Na+ exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na+/H+ antiporter across the PM, and the Na+/H+ antiporter system in salt stressed pumpkin roots was sufficient to exclude Na+. X‐ray microanalysis showed higher Na+ in the cortex, but lower Na+ in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na+, limit the radial transport of Na+ to the stele and thus restrict the transport of Na+ to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na+ to the shoot than cucumber roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号