首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thrombin mutant W215A/E217A features a drastically impaired catalytic activity toward chromogenic and natural substrates but efficiently activates the anticoagulant protein C in the presence of thrombomodulin. As the remarkable anticoagulant properties of this mutant continue to be unraveled in preclinical studies, we solved the x-ray crystal structures of its free form and its complex with the active site inhibitor H-d-Phe-Pro-Arg-CH(2)Cl (PPACK). The PPACK-bound structure of W215A/E217A is identical to the structure of the PPACK-bound slow form of thrombin. On the other hand, the structure of the free form reveals a collapse of the 215-217 strand that crushes the primary specificity pocket. The collapse results from abrogation of the stacking interaction between Phe-227 and Trp-215 and the polar interactions of Glu-217 with Thr-172 and Lys-224. Other notable changes are a rotation of the carboxylate group of Asp-189, breakage of the H-bond between the catalytic residues Ser-195 and His-57, breakage of the ion pair between Asp-222 and Arg-187, and significant disorder in the 186- and 220-loops that define the Na(+) site. These findings explain the impaired catalytic activity of W215A/E217A and demonstrate that the analysis of the molecular basis of substrate recognition by thrombin and other proteases requires crystallization of both the free and bound forms of the enzyme.  相似文献   

2.
Agonist-dependent activation of the alpha(1)-adrenergic receptor is postulated to be initiated by disruption of an interhelical salt-bridge constraint between an aspartic acid (Asp-125) and a lysine residue (Lys-331) in transmembrane domains three and seven, respectively. Single point mutations that disrupt the charges of either of these residues results in constitutive activity. To validate this hypothesis, we used site-directed mutagenesis to switch the position of these amino acids to observe, if possible, regeneration of the salt-bridge reverses that the constitutive activity of the single point mutations. The transiently expressed switch mutant receptor displayed an altered pharmacological profile. The affinity of selective alpha(1b)-adrenergic receptor antagonists for the switch mutant (D125K/K331D) was no different from the wild-type alpha(1b)-adrenergic receptor, suggesting that both receptors are maintaining similar tertiary structures in the cell membrane. However, there was a significant 4-6-fold decrease in the affinity of protonated amine receptor agonists and a 3-6-fold increase in the affinity of carboxylated catechol derivatives for the switch mutant compared with the wild-type alpha(1b)-adrenergic receptor. This pharmacology is consistent with a reversed charge at position 125 in transmembrane domain three. Interestingly, the ability of either a negatively or positively charged agonist to generate soluble inositol phosphates was similar for both types of receptors. Finally, the switch mutant (D125K/K331D) displayed similar basal signaling activity as the wild-type receptor, reversing the constitutive activity of the single point mutations (D125K and K331D). This suggests an ionic constraint has been reformed in the switch mutant analogous to the restraint previously described for the wild-type alpha(1b)-adrenergic receptor. These results strongly establish the disruption of an electrostatic interaction as an initial step in the agonist-dependent activation of alpha(1)-adrenergic receptors.  相似文献   

3.
Chan KH  Li T  Wong CO  Wong KB 《PloS one》2012,7(1):e30547
Maturation of [NiFe]-hydrogenase requires the insertion of iron, cyanide and carbon monoxide, followed by nickel, to the catalytic core of the enzyme. Hydrogenase maturation factor HypB is a metal-binding GTPase that is essential for the nickel delivery to the hydrogenase. Here we report the crystal structure of Archeoglobus fulgidus HypB (AfHypB) in apo-form. We showed that AfHypB recognizes guanine nucleotide using Asp-194 on the G5 loop despite having a non-canonical NKxA G4-motif. Structural comparison with the GTPγS-bound Methanocaldococcus jannaschii HypB identifies conformational changes in the switch I region, which bring an invariant Asp-72 to form an intermolecular salt-bridge with another invariant residue Lys-148 upon GTP binding. Substitution of K148A abolished GTP-dependent dimerization of AfHypB, but had no significant effect on the guanine nucleotide binding and on the intrinsic GTPase activity. In vivo complementation study in Escherichia coli showed that the invariant lysine residue is required for in vivo maturation of hydrogenase. Taken together, our results suggest that GTP-dependent dimerization of HypB is essential for hydrogenase maturation. It is likely that a nickel ion is loaded to an extra metal binding site at the dimeric interface of GTP-bound HypB and transferred to the hydrogenase upon GTP hydrolysis.  相似文献   

4.
Yang L  Manithody C  Qureshi SH  Rezaie AR 《Biochemistry》2008,47(22):5976-5985
Structural and mutagenesis data have indicated that the 220-loop of thrombin is stabilized by a salt-bridge between Glu-217 and Lys-224, thereby facilitating the octahedral coordination of Na (+) with contributions from two carbonyl O atoms of Arg-221a and Lys-224. All three residues are also conserved in fXa and the X-ray crystal structure of fXa indicates that both Glu-217 and Lys-224 are within hydrogen-bonding distance from one another. To investigate the role of these three residues in the catalytic function of fXa and their contribution to interaction with Na (+), we substituted them with Ala and characterized their properties in both amidolytic and proteolytic activity assays. The results indicate that the affinity of all three mutants for interaction with Na (+) has been impaired. The mutant with the greatest loss of affinity for Na (+) (E217A or E217Q) also exhibited a dramatic impairment ( approximately 3-4 orders of magnitude) in its activity toward both synthetic and natural substrates. Interestingly, factor Va (fVa) restored most of the catalytic defect with prothrombin, but not with the synthetic substrate. Both Glu-217 mutants exhibited a near normal affinity for fVa in the prothrombinase assay, but a markedly lower affinity for the cofactor in a direct-binding assay. These results suggest that, similar to thrombin, an ionic interaction between Glu-217 and Lys-224 stabilizes the 220-loop of fXa for binding Na (+). They further support the hypothesis that the Na (+) and fVa-binding sites of fXa are energetically linked and that a cofactor function for fVa in the prothrombinase complex involves inducing a conformational change in the 220-loop of fXa that appears to stabilize this loop in the Na (+)-bound active conformation.  相似文献   

5.
Salt-bridge interactions between acidic and basic amino acids contribute to the structural stability of proteins and to protein–protein interactions. A conserved salt-bridge is a canonical feature of the α-defensin antimicrobial peptide family, but the role of this common structural element has not been fully elucidated. We have investigated mouse Paneth cell α-defensin cryptdin-4 (Crp4) and peptide variants with mutations at Arg7 or Glu15 residue positions to disrupt the salt-bridge and assess the consequences on Crp4 structure, function, and stability. NMR analyses showed that both (R7G)-Crp4 and (E15G)-Crp4 adopt native-like structures, evidence of fold plasticity that allows peptides to reshuffle side chains and stabilize the structure in the absence of the salt-bridge. In contrast, introduction of a large hydrophobic side chain at position 15, as in (E15L)-Crp4 cannot be accommodated in the context of the Crp4 primary structure. Regardless of which side of the salt-bridge was mutated, salt-bridge variants retained bactericidal peptide activity with differential microbicidal effects against certain bacterial cell targets, confirming that the salt-bridge does not determine bactericidal activity per se. The increased structural flexibility induced by salt-bridge disruption enhanced peptide sensitivity to proteolysis. Although sensitivity to proteolysis by MMP7 was unaffected by most Arg7 and Glu15 substitutions, every salt-bridge variant was degraded extensively by trypsin. Moreover, the salt-bridge facilitates adoption of the characteristic α-defensin fold as shown by the impaired in vitro refolding of (E15D)-proCrp4, the most conservative salt-bridge disrupting replacement. In Crp4, therefore, the canonical α-defensin salt-bridge facilitates adoption of the characteristic α-defensin fold, which decreases structural flexibility and confers resistance to degradation by proteinases.  相似文献   

6.
The structure/function relationships of charged residues of the human mitochondrial carnitine/acylcarnitine carrier, which are conserved in the carnitine/acylcarnitine carrier subfamily and exposed to the water-filled cavity of carnitine/acylcarnitine carrier in the c-state, have been investigated by site-directed mutagenesis. The mutants were expressed in Escherichia coli, purified and reconstituted in liposomes, and their transport activity was measured as 3H-carnitine/carnitine antiport. The mutants K35A, E132A, D179A and R275A were nearly inactive with transport activities between 5 and 10% of the wild-type carnitine/acylcarnitine carrier. R178A, K234A and D231A showed transport function of about 15% of the wild-type carnitine/acylcarnitine carrier. The substitutions of the other residues with alanine had little or no effect on the carnitine/acylcarnitine carrier activity. Marked changes in the kinetic parameters with three-fold higher Km and lower Vmax values with respect to the wild-type carnitine/acylcarnitine carrier were found when replacing Lys-35, Glu-132, Asp-179 and Arg-275 with alanine. Double mutants exhibited transport activities and kinetic parameters reflecting those of the single mutants; however, lack of D179A activity was partially rescued by the additional mutation R178A. The results provide evidence that Arg-275, Asp-179 and Arg-178, which protrude into the carrier's internal cavity at about the midpoint of the membrane, are the critical binding sites for carnitine. Furthermore, Lys-35 and Glu-132, which are very probably involved in the salt-bridge network located at the bottom of the cavity, play a major role in opening and closing the matrix gate.  相似文献   

7.
Hemoglobin Barcelona was discovered by routine electrophoresis in a Spanish family showing a mild polycythemia. Red blood cells of the propositus which contained 37% of the abnormal hemoglobin had an increased oxygen affinity and a lowered alkaline Bohr effect. After purification, functional studies of Hb2 Barcelona (pI = 7.11) demonstrated a twofold increase in oxygen affinity and a moderate reduction in heme-heme interaction compared to normal HbA. Its reaction towards anionic cofactors (Cl?, DPG or IHP) was similar to that of HbA. Reactivity of the sulphydryl groups (cysteine-β93) was increased in Hb Barcelona both in the deoxy and fully liganded forms, and in the absence as well as in the presence of IHP. By three different methods (the pH-dependence of log P50, the direct proton titration technique and the measurement of the ΔpIdeox-ox) by isoelectric focusing) all in the absence of phosphate ions, Hb Barcelona was found to have a 20 to 30% reduction of the alkaline Bohr effect. This was most pronounced in the alkaline pH range. The reduction was less than expected for the loss of the important intrachain salt-bridge Asp-β94 → His-β146 considered to be responsible for 40 to 60% of the whole T → R Bohr effect (Perutz et al., 1980). This suggested that in Hb Barcelona, His-β146 could be in weak electrostatic interaction with the neighboring Glu-β90 in the deoxy form. It is concluded that the presence of the oxygen-linked Asp-β94 → His-β146 salt-bridge in HbA is a prerequisite for the full expression of the alkaline Bohr effect and heme-heme interaction.  相似文献   

8.
Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in substrate recognition. Using a panel of 78 Ala mutants of thrombin, we have mapped the allosteric core of residues that are energetically linked to Na(+) binding. These residues are Asp-189, Glu-217, Asp-222, and Tyr-225, all in close proximity to the bound Na(+). Among these residues, Asp-189 shares with Asp-221 the important function of transducing Na(+) binding into enhanced catalytic activity. None of the residues of exosite I, exosite II, or the 60-loop plays a significant role in Na(+) binding and allosteric transduction. X-ray crystal structures of the Na(+)-free (slow) and Na(+)-bound (fast) forms of thrombin, free or bound to the active site inhibitor H-d-Phe-Pro-Arg-chloromethyl-ketone, document the conformational changes induced by Na(+) binding. The slow --> fast transition results in formation of the Arg-187:Asp-222 ion pair, optimal orientation of Asp-189 and Ser-195 for substrate binding, and a significant shift of the side chain of Glu-192 linked to a rearrangement of the network of water molecules that connect the bound Na(+) to Ser-195 in the active site. The changes in the water network and the allosteric core explain the thermodynamic signatures linked to Na(+) binding and the mechanism of thrombin activation by Na(+). The role of the water network uncovered in this study establishes a new paradigm for the allosteric regulation of thrombin and other Na(+)-activated enzymes involved in blood coagulation and the immune response.  相似文献   

9.
Lam SY  Yeung RC  Yu TH  Sze KH  Wong KB 《PLoS biology》2011,9(3):e1001027

Background

Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity.

Methods and Findings

Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy.

Conclusions

Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.  相似文献   

10.
D W Green  S Aykent  J K Gierse  M E Zupec 《Biochemistry》1990,29(12):3126-3133
Steady-state kinetic analysis of human renin demonstrates the histidine proximal to the substrate scissile peptide bond contributes to the unique specificity and pH dependence of this aspartyl protease. Recombinant human renal renin purified from mammalian cell culture appears to be indistinguishable from renin isolated from human kidney with respect to specific activity (1000 Goldblatt units/mg). Recombinant renin contains carbohydrate covalently attached to asparagines at positions 5 and 75 (renin numbering) and disulfide linkages at Cys-51/Cys-58, Cys-217/Cys-221, and Cys-259/Cys-296. Renin pH dependence was evaluated between pH 4.0 and 8.0 by using a synthetic substrate identical with the amino terminus of porcine angiotensinogen (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu*Leu-Val-Tyr-Ser, where the asterisk indicates the scissile peptide bond and the proximal histidine is in italics) and an analogous tetradecapeptide where the proximal histidine was substituted with glutamine. Comparison of the pH profiles shows the catalytic efficiency (V/Km) and maximal velocity (V) of renin are greater above pH 6.5 with the substrate containing histidine proximal to the scissile peptide bond, but below pH 5.0 these parameters are greater with the glutamine substrate analogue. Solvent isotope effects show that proton transfer contributes to the rate-limiting step in catalysis with both substrates and that the proximal histidine does not serve as a base in the catalytic mechanism. Molecular modeling indicates the substrate histidine could hydrogen bond to Asp-226 of the enzyme (renin numbering), thus perturbing the ionization of the catalytic aspartyl groups (Asp-38 and Asp-226).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
NAD:arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases catalyze opposing arms of a putative ADP-ribosylation cycle. ADP-ribosylarginine hydrolases from mammalian tissues and Rhodospirillum rubrum exhibit three regions of similarity in deduced amino acid sequence. We postulated that amino acids in these consensus regions could be critical for hydrolase function. To test this hypothesis, hydrolase, cloned from rat brain, was expressed as a glutathione S-transferase fusion protein in Escherichia coli and purified by glutathione-Sepharose affinity chromatography. Conserved amino acids in each of these regions were altered by site-directed mutagenesis. Replacement of Asp-60 or Asp-61 with Ala, Gln, or Asn, but not Glu, significantly reduced enzyme activity. The double Asp-60 --> Glu/Asp-61 --> Glu mutant was inactive, as were Asp-60 --> Gln/Asp-61 --> Gln or Asp-60 --> Asn/Asp-61 --> Asn. The catalytically inactive single and double mutants appeared to retain conformation, since they bound ADP-ribose, a substrate analogue and an inhibitor of enzyme activity, with affinity similar to that of the wild-type hydrolase and with the expected stoichiometry of one. Replacing His-65, Arg-139, Asp-285, which are also located in the conserved regions, with alanine did not change specific activity. These data clearly show that the conserved vicinal aspartates 60 and 61 in rat ADP-ribosylarginine hydrolase are critical for catalytic activity, but not for high affinity binding of the substrate analogue, ADP-ribose.  相似文献   

12.
ExoM is a beta(1-4)-glucosyltransferase involved in the assembly of the repeat unit of the exopolysaccharide succinoglycan from Sinorhizobium meliloti. By comparing the sequence of ExoM to those of other members of the Pfam Glyco Domain 2 family, most notably SpsA (Bacillus subtilis) for whom the three-dimensional structure has been resolved, three potentially important aspartic acid residues of ExoM were identified. Single substitutions of each of the Asp amino acids at positions 44, 96, and 187 with Ala resulted in the loss of mutant recombinant protein activity in vitro as well as the loss of succinoglycan production in an in vivo rescue assay. Mutants harboring Glu instead of Asp-44 or Asp-96 possessed no in vitro activity but could restore succinoglycan production in vivo. However, replacement of Asp-187 with Glu completely inactivated ExoM as judged by both the in vitro and in vivo assays. These results indicate that Asp-44, Asp-96, and Asp-187 are essential for the activity of ExoM. Furthermore, these data are consistent with the functions proposed for each of the analogous aspartic acids of SpsA based on the SpsA-UDP structure, namely, that Asp-44 and Asp-96 are involved in UDP substrate binding and that Asp-187 is the catalytic base in the glycosyltransferase reaction.  相似文献   

13.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

14.
In order to investigate the function of Asp-327, a bidentate ligand of one of the zinc atoms in Escherichia coli alkaline phosphatase, and the importance of this zinc atom in catalysis, site-specific mutagenesis was used to convert Asp-327 to either asparagine or alanine. The 10(7)-fold decrease in the kcat/Km ratio observed for the Asp-327----Ala enzyme compared to the wild-type enzyme indicates that the side chain of Asp-327 is important for zinc binding at the M1 site. However, only one of the two carboxyl oxygens of Asp-327 is essential for zinc binding, since the Asp-327----Asn enzyme shows approximately the same hydrolysis activity as the wild-type enzyme. The fact that the enzymatic activity of this mutant enzyme shows a dependence on zinc concentration suggests that the other carboxyl oxygen or the negative charge on the side chain of Asp-327 is important in binding of the zinc at the M1 site. However, the zinc hydroxyl must still be appropriately positioned to attack the phosphoserine in the Asp-327----Asn enzyme; therefore, the negative charge and at least one carboxyl oxygen of the side chain are not directly involved in positioning or deprotonating the zinc hydroxyl. 31P NMR studies indicate that the Asp-327----Asn enzyme exhibits transphosphorylation activity at both pH 8.0 and pH 10.0, but at a reduced level compared to the wild-type enzyme. The biphasic production of 2,4-dinitrophenylate in the pre-steady-state kinetics of the mutant enzymes at pH 5.5 suggests that the breaking of the phosphoenzyme covalent complex is rate-limiting for both mutant enzymes. These results suggest that the main function of the zinc atom at the M1 site in catalysis involves decomposition of the phosphoenzyme covalent complex and that it may be important in helping to stabilize the alcohol leaving group.  相似文献   

15.
Lipoprotein lipase (LPL) plays a central role in normal lipid metabolism as the key enzyme involved in the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins. LPL is a member of a family of hydrolytic enzymes that include hepatic lipase and pancreatic lipase. Based on primary sequence homology of LPL to pancreatic lipase, Ser-132, Asp-156, and His-241 have been proposed to be part of a domain required for normal enzymic activity. We have analyzed the role of these potential catalytic residues by site-directed mutagenesis and expression of the mutant LPL in human embryonic kidney-293 cells. Substitution of Ser-132, Asp-156, and His-241 by several different residues resulted in the expression of an enzyme that lacked both triolein and tributyrin esterase activities. Mutation of other conserved residues, including Ser-97, Ser-307, Asp-78, Asp-371, Asp-440, His-93, and His-439 resulted in the expression of active enzymes. Despite their effect on LPL activity, substitutions of Ser-132, Asp-156, and His-241 did not change either the heparin affinity or lipid binding properties of the mutant LPL. In summary, mutation of Ser-132, Asp-156, and His-241 specifically abolishes total hydrolytic activity without disrupting other important functional domains of LPL. These combined results strongly support the conclusion that Ser-132, Asp-156, and His-241 form the catalytic triad of LPL and are essential for LPL hydrolytic activity.  相似文献   

16.
17.
Bovine pancreatic ribonuclease (RNase A) is one of the most well studied enzymes of the ribonuclease family, unlike its human counterpart, the human pancreatic ribonuclease (HPR), whose physiological role in the body is not clearly understood. Human pancreatic ribonuclease consists of 128 amino acids and the main residues located in the active site of RNase A are also conserved in HPR. In the current study, to investigate the role of Asp-121 in the catalytic activity of human pancreatic ribonuclease, several variants were generated in which Asp-121 was either mutated to an alanine or C-terminal residues beyond Asp-121, and Phe-120 were deleted. The HPR mutants were cloned, expressed in E. coli and purified to homogeneity, and functionally characterized. The mutation D121A in HPR significantly decreased the rate of the enzymatic reaction, however this decrease was not universally observed for all substrates studied. Removal of the seven C-terminal amino acid residues thereby exposing Asp-121 yielded an HPR mutant with enhanced activity, however a further deletion removing Asp-121 resulted in the complete inactivation of HPR. Our results indicate that Asp-121 is crucial for the catalytic activity of HPR and may be involved in the depolymerization activity of the enzyme.  相似文献   

18.
Procollagen C-proteinase enhancers (PCPE-1 and -2) are extracellular glycoproteins that can stimulate the C-terminal processing of fibrillar procollagens by tolloid proteinases such as bone morphogenetic protein-1. They consist of two CUB domains (CUB1 and -2) that alone account for PCPE-enhancing activity and one C-terminal NTR domain. CUB domains are found in several extracellular and plasma membrane-associated proteins, many of which are proteases. We have modeled the structure of the CUB1 domain of PCPE-1 based on known three-dimensional structures of CUB-containing proteins. Sequence alignment shows conserved amino acids, notably two acidic residues (Asp-68 and Asp-109) involved in a putative surface-located calcium binding site, as well as a conserved tyrosine residue (Tyr-67). In addition, three residues (Glu-26, Thr-89, and Phe-90) are found only in PCPE CUB1 domains, in putative surface-exposed loops. Among the conserved residues, it was found that mutations of Asp-68 and Asp-109 to alanine almost completely abolished PCPE-1 stimulating activity, whereas mutation of Tyr-67 led to a smaller reduction of activity. Among residues specific to PCPEs, mutation of Glu-26 and Thr-89 had little effect, whereas mutation of Phe-90 dramatically decreased the activity. Changes in activity were paralleled by changes in binding of different PCPE-1 mutants to a mini-procollagen III substrate, as shown by surface plasmon resonance. We conclude that PCPE-stimulating activity requires a calcium binding motif in the CUB1 domain that is highly conserved among CUB-containing proteins but also that PCPEs contain specific sites that could become targets for the development of novel anti-fibrotic therapies.  相似文献   

19.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

20.
Multiple molecular dynamics simulations of bacterioopsin pulling from its C-terminus show that its alpha-helices unfold individually. In the first metastable state observed in the simulations, helix G is unfolded at its C-terminal segment while the rest of helix G (residues 200-216) is folded and opposes resistance because of a salt-bridge network consisting of Asp-212 and Lys-216 on helix G and Arg-82 and Asp-85 on helix C. Helix G unfolds inside the bundle because the external force is applied to its C-terminal end in a direction perpendicular to the surface of the membrane. Inversely, helix F has to flip by 180 degrees to exit from the membrane because the applied force and the helical N-C axis point in opposite directions. At the highest peak of the force, which cannot be interpreted in single-molecule force spectroscopy experiments, helix F has a pronounced kink at Pro-186. Mutation of Pro-186 and/or the charged side chains mentioned above, which are involved in very favorable electrostatic interactions in the low-dielectric region of the membrane, are expected to reduce the highest peak of the force. Helices E and D unfold in a similar way to helices G and F, respectively. Hence, the force-distance profile and sequence of events during forced unfolding of bacterioopsin are influenced by the up-and-down topology of the seven-helix bundle. The sequential extraction of individual helices from the membrane suggests that the spontaneous (un)folding of bacterioopsin proceeds through metastable bundles of fewer than seven helices. The metastable states observed in the simulations provide atomic level evidence that corroborates the interpretation of very recent force spectroscopy experiments of bacteriorhodopsin refolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号