首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rhamnolipid biosurfactant PS-17 and its complex with the polysaccharide alginate, both produced by the Pseudomonas sp. S-17 strain, were studied for their antiviral activity against herpes simplex virus (HSV) types 1 and 2. They significantly inhibited the herpesvirus cytopathic effect (CPE) in the Madin-Darby bovine kidney (MDBK) cell line. The investigations were carried out according to the CPE inhibition assay protocol. The suppressive effect of the compounds on HSV replication was dose-dependent and occurred at concentrations lower than the critical micelle concentration of the surfactant. The 50% inhibitory concentration (IC50) of rhamnolipid PS-17 was 14.5 microg/ml against HSV-1 and 13 microg/ml against HSV-2. The IC50 values of the complex were 435 microg/ml for HSV-1 and 482 microg/ml for HSV-2. The inhibitory effects of the substances were confirmed by measuring the infectious virus yields with the multicycle virus growth experimental design as well: deltalog CCID50 of 1.84-2.0 against the two types of herpes simplex viruses by rhamnolipid PS-17 (20 microg/ml), and a strong reduction of the HSV-2 virus yield under the effect of the alginate complex at a concentration of 450 microg/ml. The results indicate that rhamnolipid PS-17 and its alginate complex may be considered as promising substances for the development of anti-herpetic compounds.  相似文献   

2.
The virucidal effect of peppermint oil, the essential oil of Mentha piperita, against herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of peppermint oil for herpes simplex virus plaque formation was determined at 0.002% and 0.0008% for HSV-1 and HSV-2, respectively. Peppermint oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of the oil, plaque formation was significantly reduced by 82% and 92% for HSV-1 and HSV-2, respectively. Higher concentrations of peppermint oil reduced viral titers of both herpesviruses by more than 90%. A clearly time-dependent activity could be demonstrated, after 3 h of incubation of herpes simplex virus with peppermint oil an antiviral activity of about 99% could be demonstrated. In order to determine the mode of antiviral action of the essential oil, peppermint oil was added at different times to the cells or viruses during infection. Both herpesviruses were significantly inhibited when herpes simplex virus was pretreated with the essential oil prior to adsorption. These results indicate that peppermint oil affected the virus before adsorption, but not after penetration into the host cell. Thus this essential oil is capable to exert a direct virucidal effect on HSV. Peppermint oil is also active against an acyclovir resistant strain of HSV-1 (HSV-1-ACV(res)), plaque formation was significantly reduced by 99%. Considering the lipophilic nature of the oil which enables it to penetrate the skin, peppermint oil might be suitable for topical therapeutic use as virucidal agent in recurrent herpes infection.  相似文献   

3.
Six water-insoluble fractions of fungal beta-glucans extracted by hot alkali (TM8-1 to TM8-6) from the sclerotia of Pleurotus tuber-regium (PTR) having different molecular weights (M(w)) were sulfated to give their corresponding water-soluble derivatives (S-TM8-1 to S-TM8-6) with the degree of sulfation (DS) ranging from 1.14 to 1.74. The in vitro anti-viral activities of the native beta-glucans (TM8s) and their sulfated derivatives (S-TM8s) were evaluated by the cytopathic effect assay (CPE) and the plaque reduction assay (PRA) against four kinds of viruses, including herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), respiratory syncytial virus (RSV), and influenza A virus (Flu A). Although TM8s were inactive in inhibiting the viral replication in cell cultures, the S-TM8 fractions with the defined M(w) range had potent anti-viral activity against HSV-1 and HSV-2 as shown by the CPE assay. The PRA results suggested that S-TM8 fractions seemed to exert their anti-viral effect by binding to the viral particles, preventing the latter from infecting the host cells. It was plausible that the negative charges on the polymer chain of S-TM8 could interact with the positively charged glycoproteins on the surface of HSV, minimizing the interaction between the HSV and the negatively charged host cells. The anti-viral activity of the S-TM8s might also be explained by their more extended chain conformation in solution due to an increase in one of their molecular parameter, persistence length (q), as compared to the native TM8s. The potential use of S-TM8s as a water-soluble anti-HSV agent is discussed.  相似文献   

4.
Polyclonal and monoclonal antibodies to individual herpes simplex virus (HSV) glycoproteins were tested for ability to inhibit adsorption of radiolabeled HSV type 1 (HSV-1) strain HFEMsyn [HSV-1(HFEM)syn] to HEp-2 cell monolayers. Polyclonal rabbit antibodies specific for glycoprotein D (gD) or gC and three monoclonal mouse antibodies specific for gD-1 or gC-1 most effectively inhibited HSV-1 adsorption. Antibodies of other specificities had less or no inhibitory activity despite demonstrable binding of the antibodies to virions. Nonimmune rabbit immunoglobulin G and Fc fragments partially inhibited adsorption when used at relatively high concentrations. These results suggest involvement of gD, gC, and perhaps gE (the Fc-binding glycoprotein) in adsorption. The monoclonal anti-gD antibodies that were most effective at inhibiting HSV-1 adsorption had only weak neutralizing activity. The most potent anti-gD neutralizing antibodies had little effect on adsorption at concentrations significantly higher than those required for neutralization. This suggests that, although some anti-gD antibodies can neutralize virus by blocking adsorption, a more important mechanism of neutralization by anti-gD antibodies may be interference with a step subsequent to adsorption, possibly penetration.  相似文献   

5.
D N Everly  Jr  G S Read 《Journal of virology》1997,71(10):7157-7166
During lytic herpes simplex virus (HSV) infections, the half-lives of host and viral mRNAs are regulated by the HSV virion host shutoff (Vhs) protein (UL41). The sequences of the UL41 polypeptides of HSV type 1 (HSV-1) strain KOS and HSV-2 strain 333 are 87% identical. In spite of this similarity, HSV-2 strains generally shut off the host more rapidly and completely than HSV-1 strains. To examine type-specific differences in Vhs function, we compared the Vhs activities of UL41 alleles from HSV-1(KOS) and HSV-2(333) by assaying the ability of a transfected UL41 allele to inhibit expression of a cotransfected reporter gene. Both HSV-1 and HSV-2 alleles inhibited reporter gene expression over a range of vhs DNA concentrations. However, 40-fold less of the HSV-2 allele was required to yield the same level of inhibition as HSV-1, indicating that it is significantly more potent. Examination of chimeric UL41 alleles containing various combinations of HSV-1 and HSV-2 sequences identified three regions of the 333 polypeptide which increase the activity of KOS when substituted for the corresponding amino acids of the KOS protein. These are separated by two regions which have no effect on KOS activity, even though they contain 43 of the 74 amino acid differences between the parental alleles. In addition, alleles encoding a full-length KOS polypeptide with a 32-amino-acid N-terminal extension retain considerable activity. The results begin to identify which amino acid differences are responsible for type-specific differences in Vhs activity.  相似文献   

6.
The effect of herpes simplex virus type 1 (HSV-1) infection on human cytotoxic T-lymphocyte (CTL) lytic function was assessed. All HSV-infected CTL populations tested were significantly inhibited in lysing target cells. The inhibition of CTL lytic function by infection with HSV-1 was independent of T-cell receptor-mediated antigen recognition and did not involve virus-induced shutoff of host protein synthesis, the expression of the HSV-1 transactivation protein, ICP4, or replicating virus. Understanding the functional impairment of CTL following infection with HSV may have important implications for HSV-induced immunosuppression and the mechanism of HSV persistence in immunocompetent hosts.  相似文献   

7.
8.
During lytic herpes simplex virus (HSV) infections, the HSV virion host shutoff protein (UL41) accelerates the turnover of host and viral mRNAs. Although the UL41 polypeptides from HSV type 1 (HSV-1) strain KOS and HSV-2 strain 333 are 87% identical, HSV-2 strains generally shut off the host more rapidly and completely than HSV-1 strains. In a previous study, we identified three regions of the HSV-2 UL41 polypeptide (amino acids 1 to 135, 208 to 243, and 365 to 492) that enhance the activity of KOS when substituted for the corresponding portions of the KOS protein (D. N. Everly, Jr., and G. S. Read, J. Virol. 71:7157-7166, 1997). These results have been extended through the analysis of more than 50 site-directed mutants of UL41 in which selected HSV-2 amino acids were introduced into an HSV-1 background and HSV-1 amino acids were introduced into the HSV-2 allele. The HSV-2 amino acids R22 and E25 were found to contribute dramatically to the greater activity of the HSV-2 allele, as did the HSV-2 amino acids A396 and S423. The substitution of six HSV-2 amino acids between residues 210 and 242 enhanced the HSV-1 activity to a lesser extent. In most cases, individual substitutions or the substitution of combinations of fewer than all six amino acids reduced the UL41 activity to less than that of KOS. The results pinpoint several type-specific amino acids that are largely responsible for the greater activity of the UL41 polypeptide of HSV-2. In addition, several spontaneous mutations that abolish detectable UL41 activity were identified.  相似文献   

9.
An antigenic determinant capable of inducing type-common herpes simplex virus (HSV)-neutralizing antibodies has been located on glycoprotein D (gD) of HSV type 1 (HSV-1). A peptide of 16 amino acids corresponding to residues 8 to 23 of the mature glycoprotein (residues 33 to 48 of the predicted gD-1 sequence) was synthesized. This peptide reacted with an anti-gD monoclonal antibody (group VII) previously shown to neutralize the infectivity of HSV-1 and HSV-2. The peptide was also recognized by polyclonal antibodies prepared against purified gD-1 but was less reactive with anti-gD-2 sera. Sera from animals immunized with the synthetic peptide reacted with native gD and neutralized both HSV-1 and HSV-2.  相似文献   

10.
青蒿提取物抗单纯疱疹病毒活性研究   总被引:5,自引:1,他引:4  
用细胞病变效应(CPE)法证明了青蒿水提物具有抗单纯疱疹病毒Ⅱ型(HSV—2)活性,通过初步分离纯化得到抗HSV—2活性的有效成分。用MTT法研究了青蒿水提物和有效成分的细胞毒性和抗HSV—2活性,CC50分别为5.29mg/ml和4,94mg/ml,IC50分别为1.45mg/ml和0.128mg/ml,TI分别为3.65和38.6。以0.5mg/ml的无环鸟苷(ACV)作为阳性对照,结果显示有效成分在体外可以明显抑制HSV—2的致细胞病变作用,效果与ACV相当。  相似文献   

11.
The cell wall sulfated polysaccharide of the red microalga Porphyridium sp. exhibited impressive antiviral activity against herpes simplex virus types 1 and 2 (HSV-1 and -2) both in vitro (cell culture) and in vivo (rats and rabbits). Depending on the concentration, this polysaccharide completely inhibited or slowed down the development of the cytopathic effect in HSV-infected cells, but did not show any cytotoxic effects on vero cells even when a concentration as high as 250 μg/ml was used. There was indirect evidence for a strong interaction between the polysaccharide and HSV and a weak interaction with the cell surface. When tested in vivo, Porphyridium sp. polysaccharide conferred significant and efficient protection against HSV-1 infection: at a concentration as low as 100 μg/ml, it prevented the appearance and development of symptoms of HSV-1 infection in rats and rabbits. The polysaccharide did not exhibit any cytotoxic effects at a concentration of 2 mg/ml in vivo.  相似文献   

12.
The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical.  相似文献   

13.
14.
Sixty-eight sera from the acute, recurrent, and provoked types of female genital herpes were compared for the seroprevalence of herpes simplex virus (HSV) types 1 and 2 by immunodot assay using HSV glycoprotein G. In the HSV-1-isolated patients, no HSV-2 antibodies were detected, whereas in the HSV-2-isolated patients, HSV-1 seroprevalence was 9% for the acute type, 89% for the provoked type (P< 0.005), and 55% for the recurrent type (P<0.05). The natural history of female genital herpes and the possible protective role of pre-existing antibodies in preventing the acquisition or clinical manifestation of a subsequent HSV infection are discussed.  相似文献   

15.
Abstract

A series of antiherpetic 5-substituted 2′-deoxyuridine derivatives (i. e. BVDU) and guanine derivatives (i. e. ganciclovir) have been evaluated for their cytostatic activity against murine mammary carcinoma FM3A cell lines that are deficient in cytosol thymidine kinase, but transfected by the herpes simplex virus type 1 (HSV-1)- or type 2 (HSV-2)-specified thymidine kinase gene. Most compounds were endowed with a markedly higher cytostatic activity against the HSV TK gene-transfected tumor cells than against wild-type tumor cells. The principal target for cytostatic activity of the BVDU derivatives proved thymidylate synthase, whereas the guanine derivatives inhibited HSV TK gene-transfected tumor cell proliferation by competing with cellular DNA polymerase(s) and subsequent incorporation into the cellular genome.

  相似文献   

16.
Infection of cells with herpes simplex virus type 1 (HSV-1) induces high levels of deoxypyrimidine triphosphatase. The majority of the enzyme activity is found in infected cell nuclei. A similar activity is induced by HSV type 2 (HSV-2) which, in contrast to the HSV-1 enzyme, fractionates to more than 99% in the soluble cytoplasmic extract. Of a series of temperature-sensitive mutants of HSV-1 studied, only the immediate-early mutants in complementation group 1-2 (strain 17 mutants tsD and tsK and strain KOS mutant tsB2) induced reduced levels of triphosphatase at nonpermissive temperature. Of a series of temperature-sensitive mutants of HSV-2 strain HG52, ts9 and ts13 failed to induce wild-type levels of the enzyme at nonpermissive temperature; ts9 was the most defective mutant with regard to triphosphatase expression of both herpes simplex virus serotypes. After shift-up from permissive to nonpermissive temperature, triphosphatase activity in cells infected with ts9 decreased rapidly, whereas all other mutants continued to exhibit enzyme levels comparable with controls kept at the permissive temperature. The type 1-specific nuclear expression of the triphosphatase was mapped physically by the use of HSV-1 x HSV-2 intertypic recombinants, based on enzyme levels different by more than two orders of magnitude found in nuclei of HSV-1- and HSV-2-infected cells. The locus for the type-specific expression maps between 0.67 and 0.68 fractional length on the HSV genome.  相似文献   

17.
A series of fluorine containing tricyclic analogues of acyclovir (ACV, 1) and ganciclovir (GCV, 2) were synthesized and evaluated for their activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) and cytostatic activity against HSV-1 thymidine kinase (TK) gene-transduced human osteosarcoma tumour cells. It was found that fluorine substitution reduced the antiviral activity, but most of the new compounds were pronounced cytostatic agents with potency and selectivity similar to those of parental ACV and GCV. Compounds 12, 13 and 16 seem to be promising as labeled substrates for (19)F NMR studies of the HSV TK-ligand interaction and/or monitoring of their metabolites in cells expressing HSV TK.  相似文献   

18.
Bioactivity-guided fractionation of the hot water extract from the brown alga Sargassun patens led to the isolation of a polysaccharide as an antiviral component against herpes simplex viruses which are the cause of cold sores (HSV-1) and genital herpes (HSV-2). The polysaccharide contained a sulfur group that could be present as a sulfate ester. It is thus a sulfated polysaccharide with a molecular mass of about 424 kDa, and is designated SP-2a. Gas chromatographic assay showed that the polysaccharide consisted of fucose, galactose, mannose, xylose, glucose, and galactosamine. The fucose is the major constituent sugar (35.3%), followed by galactose (18.4%). The 50% effective concentration (EC50) against HSV-2, HSV-1, and HSV-1 acyclovir resistant strain was 1.3, 5.5, and 4.1 microg/mL, respectively. The 50% cytotoxic concentration (CC50) of SP-2a on the growth of normal Vero cell line was more than 4000 microg/mL. Therefore SP-2a of S. patens may be a potent agent for treating HSV infections.  相似文献   

19.
Transformation of mouse cells (Ltk(-)) and human cells (HeLa Bu) from a thymidine kinase (TK)-minus to a TK(+) phenotype (herpes simplex virus [HSV]-transformed cells) has been induced by infection with ultraviolet-irradiated HSV type 2 (HSV-2), as well as by HSV type 1 (HSV-1). Medium containing methotrexate, thymidine, adenine, guanosine, and glycine was used to select for cells able to utilize exogenous thymidine. We have determined the kinetics of thermal inactivation of TK from cells lytically infected with HSV-1 or HSV-2 and from HSV-1- and HSV-2-transformed cells. Three hours of incubation at 41 C produces a 20-fold decrease in the TK activity of cell extracts from HSV-2-transformed cells and Ltk(-) cells lytically infected with HSV-2. The same conditions produce only a twofold decrease in the TK activities from HSV-1-transformed cells and cells lytically infected with HSV-1. This finding supports the hypothesis that an HSV structural gene coding for TK has been incorporated in the HSV-transformed cells.  相似文献   

20.
Herpes simplex virus type 2 (HSV-2) is transmitted through the genital mucosa during sexual encounters. In recent years, HSV-1 has also become commonly associated with primary genital herpes. The mechanism of viral entry of HSV-1 and HSV-2 in the female genital tract is unknown. In order to understand the molecular interactions required for HSV entry into the vaginal epithelium, we examined the expression of herpesvirus entry mediator nectin-1 in the vagina of human and mouse at different stages of their hormonal cycle. Nectin-1 was highly expressed in the epithelium of human vagina throughout the menstrual cycle, whereas the mouse vaginal epithelium expressed nectin-1 only during the stages of the estrous cycle in which mice are susceptible to vaginal HSV infection. Furthermore, the ability of nectin-1 to mediate viral entry following intravaginal inoculation was examined in a mouse model of genital herpes. Vaginal infection with either HSV-1 or HSV-2 was blocked by preincubation of the virus with soluble recombinant nectin-1. Viral entry through the vaginal mucosa was also inhibited by preincubation of HSV-2 with antibody against gD. Together, these results suggest the importance of nectin-1 in mediating viral entry for both HSV-1 and HSV-2 in the genital mucosa in female hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号