首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cytotoxic T lymphocytes (CTL) can control some viral infections and may be important in the control of lentiviruses, including human immunodeficiency virus type 1. Since there is limited evidence for an in vivo role of CTL in control of lentiviruses, dissection of immune mechanisms in animal lentiviral infections may provide needed information. Horses infected with equine infectious anemia virus (EIAV) a lentivirus, have acute plasma viremia which is terminated in immunocompetent horses. Viremic episodes may recur, but most horses ultimately control infection and become asymptomatic carriers. To begin dissection of the immune mechanisms involved in EIAV control, peripheral blood mononuclear cells (PBMC) from infected horses were evaluated for CTL to EIAV-infected cells. By using noninfected and EIAV-infected autologous equine kidney (EK) cells in 51Cr-release assays, EIAV-specific cytotoxic activity was detected in unstimulated PBMC from three infected horses. The EIAV-specific cytotoxic activity was major histocompatibility complex (MHC) restricted, as determined by assaying EIAV-infected heterologous EK targets, and was mediated by CD8+ T lymphocytes, as determined by depleting these cells by a panning procedure with an anti-CD8 monoclonal antibody. MHC-restricted CD8+ CTL in unstimulated PBMC from infected horses caused significant specific lysis of autologous EK cells infected with recombinant vaccinia viruses expressing EIAV genes, either env or gag plus 5' pol. The EIAV-specific MHC-restricted CD8+ CTL were detected in two EIAV-infected horses within a few days after plasma viremia occurred and were present after viremia was terminated. The detection of these immune effector cells in EIAV-infected horses permits further studies to determine their in vivo role.  相似文献   

3.
Similar to other human and animal lentiviruses, equine infectious anemia virus (EIAV) is detectable in vivo in cells of the monocyte-macrophage lineage. Owing to their short-lived nature, horse peripheral blood macrophage cultures (HMC) are rarely used for in vitro propagation of EIAV, and equine dermal (ED) or kidney cell cultures, which can be repeatedly passed in vitro, are used in most studies. However, wild-type isolates of EIAV will not grow in these cell types without extensive adaptation, a process which may attenuate viral virulence. To better define the effect of host cell tropism on the virulence and pathogenesis of EIAV, we studied a field isolate of EIAV during in vitro adaptation to growth in an ED cell line. Interestingly, as the virus adapted to growth in ED cells, there was a corresponding decrease in infectivity for HMC, and the final ED-adapted isolate was more than 100-fold more infectious for ED cells than for HMC. In vivo studies indicated that the ED-adapted isolate was able to replicate in experimentally infected horses, although no clinical signs of EIA were observed. Thus, selection for in vitro replication on ED cells correlated with a loss of EIAV tropism for HMC in vitro and was associated with avirulence in vivo.  相似文献   

4.
A novel strain of equine infectious anemia virus (EIAV) called vMA-1c that rapidly and specifically killed infected equine fibroblasts (ED cells) but not other infectible cell lines was established. This strain was generated from an avirulent, noncytopathic strain of EIAV, MA-1. Studies with this new cytolytic strain of virus have permitted us to define viral parameters associated with EIAV-induced cell killing and begin to explore the mechanism. vMA-1c infection resulted in induction of rapid cell death, enhanced fusogenic activity, and increased rates of spread in equine fibroblasts compared to other strains of EIAV. The highly cytolytic nature of vMA-1c suggested that this strain might be superinfecting equine fibroblasts. Receptor interference studies demonstrated that prior infection of equine fibroblasts with EIAV did not alter the ability of vMA-1c to infect and kill these cells. In similar studies in a canine fibroblast cell line, receptor interference did occur. vMA-1c infection of equine fibroblasts was also associated with large quantities of unintegrated viral DNA, a well-established hallmark of retroviral superinfection. Cloning of the vMA-1c genome identified nucleotide changes that would result in at least one amino acid change in all viral proteins. A chimeric infectious molecular clone containing the vMA-1c tat, S2, and env open reading frames recapitulated most of the characteristics of vMA-1c, including superinfection, fibroblast killing, and fusogenic activity. In summary, in vitro selection for a strain of EIAV that rapidly killed cells resulted in the generation of a virus that was able to superinfect these cells, presumably by the use of a novel mechanism of cell entry. This phenotype mapped to the 3' half of the genome.  相似文献   

5.
Antigen-specific T-helper (Th) lymphocytes are critical for the development of antiviral humoral responses and the expansion of cytotoxic T lymphocytes (CTL). Identification of relevant Th lymphocyte epitopes remains an important step in the development of an efficacious subunit peptide vaccine against equine infectious anemia virus (EIAV), a naturally occurring lentivirus of horses. This study describes Th lymphocyte reactivity in EIAV carrier horses to two proteins, p26 and p15, encoded by the relatively conserved EIAV gag gene. Using partially overlapping peptides, multideterminant and possibly promiscuous epitopes were identified within p26. One peptide was identified which reacted with peripheral blood mononuclear cells (PBMC) from all five EIAV-infected horses, and three other peptides were identified which reacted with PBMC from four of five EIAV-infected horses. Four additional peptides containing both CTL and Th lymphocyte epitopes were also identified. Multiple epitopes were recognized in a region corresponding to the major homology region of the human immunodeficiency virus, a region with significant sequence similarity to other lentiviruses including simian immunodeficiency virus, puma lentivirus, feline immunodeficiency virus, Jembrana disease virus, visna virus, and caprine arthritis encephalitis virus. PBMC reactivity to p15 peptides from EIAV carrier horses also occurred. Multiple p15 peptides were shown to be reactive, but not all infected horses had Th lymphocytes recognizing p15 epitopes. The identification of peptides reactive with PBMC from outbred horses, some of which encoded both CTL and Th lymphocyte epitopes, should contribute to the design of synthetic peptide or recombinant vector vaccines for EIAV.  相似文献   

6.
Cross reactivity of equine infectious anemia virus (EIAV) antigen prepared using a recombinant baculovirus containing the p26 gene of strain P337-V70 was examined by the agar gel immunodiffusion (AGID) test and enzyme-linked immunosorbent assay (ELISA). Serum samples serially collected from 13 horses experimentally infected with six different EIAV strains (two or three horses per strain) were subjected to the test. Positive reactions were observed in the AGID test and ELISA before or soon after the first feverish period and continued persistently in most of the horses. The results with recombinant antigens were essentially the same as those with the virion antigen prepared from horse cell cultures both in the AGID test and ELISA. The reactivities of the antigens were further compared using serum samples collected from horses in 1999 in certain districts of Mongolia where equine infectious anemia has been prevalent, and from horses in Japan in 1973 when EIA had not been eliminated completely from Japanese horses. These results were completely concurrent. Generally, recombinant antigens have high specificity but low cross reactivity to heterologous strains. However, the present study showed that the recombinant EIAV p26 antigen has cross reactivity to the heterologous strain and is useful for diagnosis of EIA in the field.  相似文献   

7.
Virulent, wild-type equine infectious anemia virus (EIAV) is restricted in one or more early steps in replication in equine skin fibroblast cells compared with cell culture-adapted virus, which is fully competent for replication in this cell type. We compared the sequences of wild-type EIAV and a full-length infectious proviral clone of the cell culture-adapted EIAV and found that the genomes were relatively well conserved with the exception of the envelope gene region, which showed extensive sequence differences. We therefore constructed several wild-type and cell culture-adapted virus chimeras to examine the role of the envelope gene in replication in different cell types in vitro. Unlike wild-type virus, which is restricted by an early event(s) for replication in equine dermis cells, the wild-type outer envelope gene chimeras are replication competent in this cell type. We conclude that even though there are extensive sequence differences between wild-type and cell culture-adapted viruses in the surface envelope gene region, this domain is not a determinant of the differing in vitro cell tropisms.  相似文献   

8.
Viral DNA in horses infected with equine infectious anemia virus.   总被引:14,自引:12,他引:2       下载免费PDF全文
The amount and distribution of viral DNA were established in a horse acutely infected with the Wyoming strain of equine infectious anemia virus (EIAV). The highest concentration of viral DNA were found in the liver, lymph nodes, bone marrow, and spleen. The kidney, choroid plexus, and peripheral blood leukocytes also contained viral DNA, but at a lower level. It is estimated that at day 16 postinoculation, almost all of the viral DNA was located in the tissues, with the liver alone containing about 90 times more EIAV DNA than the peripheral blood leukocytes did. Assuming a monocyte-macrophage target, each infected cell contained multiple copies of viral DNA (between 6 and 60 copies in liver Kupffer cells). At day 16 postinoculation, most of the EIAV DNA was not integrated into host DNA, but existed in both linear and circular unintegrated forms. In contrast to acute infection, viral DNA was not detectable in tissues from asymptomatic horses with circulating antibody to EIAV.  相似文献   

9.
Equine infectious anemia virus (EIAV) is genetically one of the simplest lentiviruses in that the viral genome encodes only three accessory genes, tat, rev, and S2. Although serological analyses demonstrate the expression of the S2 protein in persistently infected horses, the role of this viral gene remains undefined. We recently reported that the S2 gene is not essential for EIAV replication in primary equine macrophages, as EIAV mutants lacking the S2 gene replicate to levels similar to those of the parental virus (F. Li, B. A. Puffer, and R. C. Montelaro, J. Virol. 72:8344-8348, 1998). We now describe in vivo studies that examine the evolution and role of the S2 gene in ponies experimentally infected with EIAV. The results of these studies reveal for the first time that the S2 gene is highly conserved during persistent infection and that deletion of the S2 gene reduces viral virulence and virus replication levels compared to those of the parental virus containing a functional S2 gene. These data indicate that the EIAV S2 gene is in fact an important determinant of viral replication and pathogenic properties in vivo, despite the evident lack of S2 influence on viral replication levels in vitro. Thus, these observations suggest in vivo functions of EIAV S2 that are not adequately reflected in simple infections of cultured cells, including natural target macrophages.  相似文献   

10.
用FLAG^TM或6His对EIAV疫苗株全基因感染性克隆pFD3的S2分子进行分子标记,以建立EIAV疫苗株与野毒株感染鉴别诊断的方法。标记产物pFD3-FLAG和pFD3-HISADD转染驴胎皮细胞(FDD)后收获衍生病毒并用逆转录酶活性检测和PCR方法确定其感染性。在FDD细胞上盲传至第五代后收获细胞培养上清再感染驴单核巨噬细胞(DL),盲传三代后pFD3-FLAGRT酶活性显示弱阳性,未见明显的细胞病变;pFD3-HISADD为强阳性,且细胞病变效应明显,在电镜下可见明显的病毒颗粒。与父本克隆pFD3相比,在细胞水平上二者复制特性有明显的不同。证明在DL细胞上S2基因的完整性是病毒复制很重要的因素。  相似文献   

11.
Wild-type strains of equine infectious anemia virus (EIAV) prevent superinfection of previously infected cells. A variant strain of virus that spontaneously arose during passage, EIAVvMA-1c, can circumvent this mechanism in some cells, such as equine dermis (ED) cells, but not in others, such as equine endothelial cells. EIAVvMA-1c superinfection of ED cells results in a buildup of unintegrated viral DNA and rapid killing of the cell monolayer. Here, we examined the mechanism of resistance that is used by EIAV to prevent superinfection and explored the means by which EIAVvMA-1c overcomes this restriction. We found that the cellular receptor used by EIAV, equine lentivirus receptor 1 (ELR1), remains on the surface of cells chronically infected with EIAV, suggesting that wild-type EIAV interferes with superinfection by masking ELR1. The addition of soluble wild-type SU protein to the medium during infection blocked infection by wild-type strains of virus, implicating SU as the viral protein responsible for interfering with virion entry into previously infected cells. Additionally, interference of wild-type EIAV binding to ELR1 by the addition of either anti-ELR1 antibodies or the ELR1 ectodomain prevented entry of the wild-type strains of EIAV into two permissive cell populations. Many of these same interference treatments prevented EIAVvMA-1c infection of endothelial cells but only modestly affected the ability of EIAVvMA-1c to enter and kill previously infected ED cells. These findings indicate that EIAVvMA-1c retains the ability to use ELR1 for entry and suggest that this virus can interact with an additional, unidentified receptor to superinfect ED cells.  相似文献   

12.
13.
Equine infectious anemia virus (EIAV), a macrophage-tropic lentivirus, causes persistent infections of horses. A number of biologic features, including the rapid development of acute disease, the episodic nature of chronic disease, the propensity for viral genetic variation, and the ability for many infected animals to eventually control virus replication, render EIAV a potentially useful model system for the testing of antiretroviral therapies and vaccine strategies. The utility of the EIAV system has been hampered by the lack of proviral clones that encode promptly pathogenic viral stocks. In this report, we describe the generation and characterization of two infectious molecular clones capable of causing acute clinical syndromes similar to those seen in natural infections. Virus derived from clone p19/wenv17 caused severe debilitating disease at 5 to 7 days postinfection; initial febrile episodes were fatal in two of three infected animals. Virus derived from a second clone, p19/wenv16, caused somewhat milder primary febrile episodes by 10 to 12 days postinfection in two of two infected animals. Virus derived from both clones caused persistent infections such that some animals exhibited chronic equine infectious anemia, characterized by multiple disease episodes. The two virulent clones differ in envelope and rev sequences.  相似文献   

14.
根据马传贫强毒株EIAV-L和疫苗株EIAV-FDD表面蛋白gp90的N-连接糖基化的变化规律,采用PCR定点突变的方法,对全长感染性克隆pLGFD3-8上的N-连接糖基化的差异区域进行改造后,构建成含有3个N-连接糖基化位点突变的感染性克隆pLGNl91N236N246.将其转染驴胎皮肤细胞(FDD),通过用逆转录酶活性、间接免疫荧光和RT-PCR方法检测而确定其感染性.结果表明,在FDD细胞中盲传三代后,在细胞培养物中可检测到逆转录酶活性,RT-PCR和间接免疫荧光检测均呈阳性,电镜下见到典型的EIAV颗粒.这一结果可能对N-连接糖基化在我国马传贫弱毒疫苗致弱机理的作用研究而奠定良好的基础.  相似文献   

15.
The equine lentivirus receptor 1 (ELR1), a member of the tumor necrosis factor receptor (TNFR) protein family, has been identified as a functional receptor for equine infectious anemia virus (EIAV). Toward defining the functional interactions between the EIAV SU protein (gp90) and its ELR1 receptor, we mapped the gp90 binding domain of ELR1 by a combination of binding and functional assays using the EIAV SU gp90 protein and various chimeric receptor proteins derived from exchanges between the functional ELR1 and the nonbinding homolog, mouse herpesvirus entry mediator (murine HveA). Complementary exchanges of the respective cysteine-rich domains (CRD) between the ELR1 and murine HveA proteins revealed CRD1 as the predominant determinant of functional gp90 binding to ELR1 and also to a chimeric murine HveA protein expressed on the surface of transfected Cf2Th cells. Mutations of individual amino acids in the CRD1 segment of ELR1 and murine HveA indicated the Leu70 in CRD1 as essential for functional binding of EIAV gp90 and for virus infection of transduced Cf2Th cells. The specificity of the EIAV SU binding domain identified for the ELR1 receptor is fundamentally identical to that reported previously for functional binding of feline immunodeficiency virus SU to its coreceptor CD134, another TNFR protein. These results indicate unexpected common features of the specific mechanisms by which diverse lentiviruses can employ TNFR proteins as functional receptors.  相似文献   

16.
Among the diverse experimental vaccines evaluated in various animal lentivirus models, live attenuated vaccines have proven to be the most effective, thus providing an important model for examining critical immune correlates of protective vaccine immunity. We previously reported that an experimental live attenuated vaccine for equine infectious anemia virus (EIAV), based on mutation of the viral S2 accessory gene, elicited protection from detectable infection by virulent virus challenge (F. Li et al., J. Virol. 77:7244-7253, 2003). To better understand the critical components of EIAV vaccine efficacy, we examine here the relationship between the extent of virus attenuation, the maturation of host immune responses, and vaccine efficacy in a comparative study of three related attenuated EIAV proviral vaccine strains: the previously described EIAV(UK)DeltaS2 derived from a virulent proviral clone, EIAV(UK)DeltaS2/DU containing a second gene mutation in the virulent proviral clone, and EIAV(PR)DeltaS2 derived from a reference avirulent proviral clone. Inoculations of parallel groups of eight horses resulted in relatively low levels of viral replication (average of 10(2) to 10(3) RNA copies/ml) and a similar maturation of EIAV envelope-specific antibody responses as determined in quantitative and qualitative serological assays. However, experimental challenge of the experimentally immunized horses by our standard virulent EIAV(PV) strain by using a low-dose multiple exposure protocol (three inoculations with 10 median horse infective doses, administered intravenously) revealed a marked difference in the protective efficacy of the various attenuated proviral vaccine strains that was evidently associated with the extent of vaccine virus attenuation, time of viral challenge, and the apparent maturation of virus-specific immunity.  相似文献   

17.
[目的]马传染性贫血病毒(EIAV)弱毒疫苗致弱机制和免疫保护机理的研究可以为慢病毒疫苗的研究提供重要的模型.为探讨IFN-γ表达水平与疫苗保护性免疫的关系,本研究旨在建立一种准确、有效地检测EIAV感染马不同T细胞亚型表达IFN-γ水平的方法.[方法]我们将分离的马传贫弱毒疫苗免疫马(FDDV)、强毒感染马(LV)和健康马的外周血单核细胞(PBMC),体外分别经病毒(FDDV)和PMA/Inomycin激活、 BFA 阻断蛋白分泌、荧光标记马的特异性表面抗体和IFN-γ抗体等过程后,进行流式检测.[结果]疫苗免疫马产生的特异性IFN-γ水平为CD4 1.7(0.9%/CD8 6.1(1.2%,而强毒组则为CD4 0.6(0.1%/CD8 2.4(0.9%.[结论]本研究建立的多荧光参数流式细胞术同时检测细胞内IFN-γ染色和淋巴细胞亚型的方法,具有良好的特异性,稳定性和重复性.为研究EIAV弱毒疫苗免疫保护机制奠定了基础.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号