首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Vgamma9/Vdelta2 T cells play a crucial role in the immune response to microbial pathogens, yet their unconventional reactivity towards non-peptide antigens has been enigmatic until recently. The break-through in identification of the specific activator was only possible due to recent success in a seemingly remote field: the elucidation of the reaction steps of the newly discovered 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway of isoprenoid biosynthesis that is utilised by many pathogenic bacteria. Unexpectedly, the intermediate of the MEP pathway, (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate) (HMB-PP), turned out to be by far the most potent Vgamma9/Vdelta2 T cell activator known, with an EC(50) of 0.1 nM.  相似文献   

2.
The inducible costimulator protein (ICOS) was recently identified as a costimulatory molecule for T cells. Here we analyze the role of ICOS for the acquired immune response of mice against the intracellular bacterium Listeria monocytogenes. During oral L. monocytogenes infection, low levels of ICOS expression were detected by extracellular and intracellular Ab staining of Listeria-specific CD4(+) and CD8(+) T cells. Blocking of ICOS signaling with a soluble ICOS-Ig fusion protein markedly impaired the Listeria-specific T cell responses. Compared with control mice, the ICOS-Ig treated mice generated significantly reduced numbers of Listeria-specific CD8(+) T cells in spleen and liver, as determined by tetramer and intracellular cytokine staining. In contrast, the specific CD8(+) T cell response in the intestinal mucosa did not appear to be impaired by the ICOS-Ig treatment. Analysis of the CD4(+) T cell response revealed that ICOS-Ig treatment also affected the specific CD4(+) T cell response. When restimulated with listerial Ag in vitro, reduced numbers of CD4(+) T cells from infected and ICOS-Ig-treated mice responded with IFN-gamma production. The impaired acquired immune response in ICOS-Ig treated mice was accompanied by their increased susceptibility to L. monocytogenes infection. ICOS-Ig treatment drastically enhanced bacterial titers, and a large fraction of mice succumbed to the otherwise sublethal dose of infection. Thus, ICOS costimulation is crucial for protective immunity against the intracellular bacterium L. monocytogenes.  相似文献   

3.
Owing to its unique intracellular biology that allows it to gain access to the host cell cytosol, Listeria monocytogenes induces potent, protective CD8 responses. The study of these responses has served as a paradigm to understand cell-mediated immunity to microbial pathogens. The availability of mutants specifically defective in unique aspects of the intracellular biology of this pathogen has greatly aided these studies. During the past few years, progress has been made to understand the contribution of the innate immune system and CD4 T cells in the generation of robust, long lasting CD8 responses to L. monocytogenes.  相似文献   

4.
In the last two decades, listeriosis, caused by the intracellular pathogen Listeria monocytogenes, became one of the most concerning food-born infections. Although it had been known before as an infectious disease of limited importance, listeriosis was brought into attention of scientists due to the frequent outbreaks recently reported. Despite the major progress made towards understanding the mechanisms of virulence of L. monocytogenes, our current knowledge into the process of Listeria-associated pathogenesis and virulence is still partial and fragmentary. In this study we demonstrate that T lymphocytes with reactivity to L. monocytogenes are frequently present in healthy individuals (73%), most probably as a consequence of subclinical infections. Host resistance to infection by L. monocytogenes involves a series of interactions between cells of the immune system, of which the antigen presenting cell/T lymphocyte partnership is essential. The ability of memory T cells to respond when exposed to their target antigen is traditionally assessed by measuring uptake of [3H] - thymidine. Our study has been carried out by means of an alternative methodology based on flow-cytometry, an approach which has several advantages on [3H] - thymidine incorporation technique: allows targeted analysis of particular cell types, simultaneous assessment of various cellular markers, and circumvents handling of radioisotopes.  相似文献   

5.
CD8 T cell immunome analysis of Listeria monocytogenes   总被引:6,自引:0,他引:6  
The identification of T cell epitopes is crucial for the understanding of the host response during infections with pathogenic microorganisms. Generally, the identification of relevant T cell responses is based on the analysis of T cell lines propagated in vitro. We used an ex vivo approach for the analysis of the CD8 T cell response against Listeria monocytogenes that is based upon the fractionation of naturally processed antigenic peptides and subsequent analysis with T cells in an enzyme-linked immunospot (ELISPOT) assay. Our data indicate that the direct ex vivo ELISPOT analysis of peptides extracted from infected tissues represents a versatile and potent test system for the analysis of the CD8 T cell immunome of microorganisms that furthermore requires neither the knowledge of the microbial genome nor of the specificity of responding T cells.  相似文献   

6.
Listeria monocytogenes is a gram-positive bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell. During cell-to-cell spread, bacteria become temporarily confined to secondary vacuoles. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from secondary vacuoles. PC-PLC requires cleavage of an N-terminal propeptide for activation, and Mpl, a metalloprotease of Listeria, is involved in the proteolytic activation of PC-PLC. Previously, we showed that cell wall translocation of PC-PLC is inefficient, resulting in accumulation of PC-PLC at the membrane-cell wall interface. In infected cells, rapid cell wall translocation of PC-PLC is triggered by a decrease in pH and correlates with cleavage of the propeptide in an Mpl-dependent manner. To address the role of the propeptide and of Mpl in cell wall translocation of PC-PLC, we generated a cleavage site mutant and a propeptide deletion mutant. The intracellular behavior of these mutants was assessed in pulse-chase experiments. We observed efficient translocation of the proform of the PC-PLC cleavage site mutant in a manner that was pH sensitive and Mpl dependent. However, the propeptide deletion mutant was efficiently translocated into host cells independent of Mpl and pH. Overall, these results suggest that Mpl regulates PC-PLC translocation across the bacterial cell wall in a manner that is dependent on the presence of the propeptide but independent of propeptide cleavage. In addition, similarly to Mpl-mediated cleavage of PC-PLC propeptide, Mpl-mediated translocation of PC-PLC across the bacterial cell wall is pH sensitive.  相似文献   

7.
利用生物软件设计单增李斯特菌溶血素蛋白的基因hly的引物,通过PCR扩增hly基因,并将其克隆至PET28a(+)原核表达载体,转化大肠杆菌BL21进行优化表达。用镍柱纯化表达产物LLO,通过免疫印记鉴定其免疫原性,并通过溶血实验鉴定其溶血活性。琼脂糖凝胶电泳结果表明PCR扩增出1 590 bp的片段,经测序鉴定其序列同源性可达99%。SDS-PAGE结果表明诱导表达的产物大小约为58 kD,其最优化的表达条件是28°C下用0.1 mmol/L IPTG诱导6 h。Western blotting结果表明重组表达的LLO具有免疫原性;溶血实验表明重组表达的LLO具有较强的溶血活性,其溶血效价可达1:1 024。这为制备针对单增李斯特菌的单克隆抗体及其检测方法的建立奠定了基础。  相似文献   

8.
The surface subproteome of Listeria monocytogenes that includes many proteins already known to be involved in virulence and interaction with host cells has been characterized. A new method for the isolation of a defined surface proteome of low complexity has been established based on serial extraction of proteins by different salts at high concentration, and in all 55 proteins were identified by N-terminal sequencing and mass spectrometry. About 16% of these proteins are of unknown function and three proteins have no orthologue in the nonpathogenic L. innocua and might be involved in virulence mechanisms. Remarkably, a relatively high number of proteins with a function in the cytoplasmic compartment was identified in this surface proteome. These proteins had neither predicted or detectable signal peptides nor could any modification be observed except removal of the N-terminal methionine. Enolase (Lmo2455) is one of these proteins. It was shown to be present in the cell wall of the pathogen by immunoelectron microscopy and, along with heat shock factor DnaK (Lmo1473), elongation factor TU (Lmo2653), and glyceraldehyde-3-phosphate dehydrogenase (Lmo2459), it was found to be able to bind human plasminogen in overlay blots and surface plasmon resonance (SPR) experiments. The KD values of these interactions were determined by SPR measurements. The data indicate a possible role of these proteins as receptors for human plasminogen on the bacterial cell surface. The potential role of this recruitment of a host protease for extracellular invasion mechanisms is discussed.  相似文献   

9.
Protective immunity to the intracellular bacterial pathogen, Listeria monocytogenes, is mediated by a vigorous T cell response. In particular, CD8(+) cytolytic T cells provide essential effector function in the clearance of bacterial infection. The cytoplasmic entry of Listeria facilitated by listeriolysin O is an essential feature not only of the bacteria's virulence, but of the ability of the bacteria to elicit protective immunity in the host. To determine how cytoplasmic entry of Listeria regulates the development of protective immunity, we examined the effects of this process on the maturation of murine dendritic cells (DC) and on their ability to prime naive CD8(+) T cell responses. Costimulatory molecules (CD40, CD80, and CD86) were induced by listerial infection only when the bacteria invaded the cytoplasm. In addition, the production of IL-12, IL-10, IL-6, and TNF-alpha was most efficiently triggered by cytosolic Listeria. Naive T cells primed by peptide-loaded DC infected with either wild-type or nonhemolytic mutant Listeria proliferated equivalently, but a much larger proportion of those primed by wild-type Listeria monocytogenes produced IFN-gamma. Costimulatory molecules induced by cytosolic entry regulated T cell proliferation and, as a result, the number of functional T cells generated. DC-produced cytokines (specifically IL-12 and IL-10) were the major factors determining the proportion of T cells producing IFN-gamma. These data highlight the requirement for listerial cytoplasmic invasion for the optimal priming of T cell cytokine production and attest to the importance of this event to the development of protective CTL responses to this pathogen.  相似文献   

10.
Organ-specific CD4+ T cell response during Listeria monocytogenes infection   总被引:4,自引:0,他引:4  
The immune response against the intracellular bacterium Listeria monocytogenes involves both CD4(+) and CD8(+) T cells. We used the MHC class II-presented peptide listeriolysin(189-201) to characterize the organ-specific CD4(+) T cell response during infection. Systemic listeriosis resulted in a strong peptide-specific CD4(+) T cell response with frequencies of 1/100 and 1/30 CD4(+) splenocytes at the peak of primary and secondary response, respectively. This response was not restricted to lymphoid organs, because we detected specific CD4(+) T cells in all tissues analyzed. However, the tissue distribution of the T cell response was dependent on the route of infection. After i.v. infection, the strongest CD4(+) T cell response and the highest levels of memory cells were observed in spleen and liver, the major sites of L. monocytogenes replication. After oral infection, we detected a strong response in the liver, the lamina propria, and the intestinal epithelium. These tissues also harbored the highest frequencies of listeriolysin(189-201)-specific CD4(+) memory T cells 5-8 wk post oral infection. Our results show that kinetics and magnitude of the CD4(+) T cell response and the accumulation of CD4(+) memory T cells depend on the route of infection and are regulated in a tissue-specific way.  相似文献   

11.
12.
13.
CD4 T cells are known to assist the CD8 T cell response by activating APC via CD40-CD40 ligand (L) interactions. However, recent data have shown that bacterial products can directly activate APC through Toll-like receptors, resulting in up-regulation of costimulatory molecules necessary for the efficient priming of naive T cells. It remains unclear what role CD4 T cell help and various costimulation pathways play in the development of CD8 T cell responses during bacterial infection. In this study, we examined these questions using an intracellular bacterium, Listeria monocytogenes, as a model of infection. In CD4 T cell-depleted, CD4(-/-), and MHC class II(-/-) mice, L. monocytogenes infection induced CD8 T cell activation and primed epitope-specific CD8 T cells to levels commensurate with those in normal C57BL/6 mice. Furthermore, these epitope-specific CD8 T cells established long-term memory in CD4(-/-) mice that was capable of mounting a protective recall response. In vitro analysis showed that L. monocytogenes directly stimulated the activation and maturation of murine dendritic cells. The CD8 T cell response to L. monocytogenes was normal in CD40L(-/-) mice but defective in CD28(-/-) and CD137L(-/-) mice. These data show that in situations where infectious agents or immunogens can directly activate APC, CD8 T cell responses are less dependent on CD4 T cell help via the CD40-CD40L pathway but involve costimulation through CD137-CD137L and B7-CD28 interactions.  相似文献   

14.
Two lines of mice genetically selected for high and low in vitro responses to PHA were used to evaluate the impact of T cell polyclonal expansion on acquired resistance to Listeria monocytogenes. The selective breeding induced two major consequences in low responder mice: (1) a reduction of the number of L3T4+ cells and (2) a restriction of T cell expansion upon PHA stimulation, predominantly affecting the Lyt-2+ subset, and associated with an abridgment of IL-2 production. In vivo PHA stimulation induced anti-Listeria protection in high responder mice, but was much less effective in low responder mice. Flow cytometer analysis revealed that T cell proliferation was also reduced in low responder mice during the course of Listeria infection, implying both L3T4+ and Lyt-2+ subsets. This defect did not apparently influence the kinetics of bacterial elimination in host tissues, which was similar in both lines during primary Listeria infection. In contrast, the expression of delayed-type hypersensitivity to Listeria antigens and the level of immunologic memory were significantly reduced in low responder mice. In vivo selective T cell depletion by anti-L3T4 or anti-Lyt-2 mAb allowed us to demonstrate the predominant role of Lyt-2+ cells in protection and that of L3T4+ cells in the expression of delayed-type hypersensitivity.  相似文献   

15.
During bacterial multiplication, Listeria monocytogenes (strain EGD) secretes sulfhydryl-dependent cytotoxin, termed listeriolysin O, a virulence factor presumable promoting intracellular growth of this ubiquitous pathogen. The role of this exotoxin in the process of T cell activation was studied in vivo during the course of an experimental infection in the mouse. By using highly purified listeriolysin O, it was found that infection with viable, replicative bacteria induced in vivo the emergence of T cells specifically reacting against this exotoxin, as demonstrated by eliciting the expression of delayed-type hypersensitivity to listeriolysin O in Listeria-immune mice. The kinetics of this inflammatory reaction followed the same pattern as that observed with crude Listeria antigenic preparation classically used for the detection of delayed-type hypersensitivity, with a peak of expression by day 6 and a slow decline over the next 3 wk to a residual level, indicating the presence of memory T cells reacting with the exotoxin. This result, therefore, allowed us to identify for the first time that a pure immunogenic molecule secreted by L. monocytogenes is specifically recognized by sensitized T cells induced during the course of infection by L. monocytogenes. The expression of T cell-mediated immunity to listeriolysin O was generated by very low amounts of replicative bacteria, indicating that the exotoxin released in host tissues during the process of intracellular growth is highly immunogenic. Our data favor the view that the binding of listeriolysin O to the membrane cholesterol might be a critical event potentiating the in vivo expression of delayed sensitivity against this exotoxin. Indeed, the insertion of listeriolysin O into the cell membrane induced resistance to enzymatic proteolysis and membrane-bound listeriolysin O was significantly more effective in inducing delayed inflammatory reaction in Listeria-immune mice.  相似文献   

16.
The intestinal mucosal CD8 T cell response to infection with Listeria monocytogenes was measured using MHC class I tetramers and was compared with the response in peripheral blood, secondary lymphoid tissue, and liver. To assess the vaccination potential of Listeria and to analyze responses in C57BL/6 mouse strains, a recombinant Listeria expressing OVA (rLM-ova) was generated. The response peaked at 9 days postinfection with a much larger fraction of the intestinal mucosa and liver CD8 T cell pool OVA specific, as compared with the spleen. However, these differences were not linked to bacterial titers in each site. The higher responses in lamina propria and liver resulted in a larger CD8 memory population in these tissues. Furthermore, the level of memory induced was dependent on infectious dose and inversely correlated with the magnitude of the recall response after oral challenge. Recall responses in the tissues were most robust in the lamina propria and liver, and reactivated Ag-specific T cells produced IFN-gamma. Infection of CD40- or MHC class II-deficient mice induced poor CD8 T cell responses in the intestinal mucosa, but only partially reduced responses in the spleen and liver. Overall, the results point to novel pathways of tissue-specific regulation of primary and memory antimicrobial CD8 T cell responses.  相似文献   

17.
18.
19.
The non-mevalonate pathway of isoprenoid precursor biosynthesis   总被引:1,自引:0,他引:1  
The recently discovered non-mevalonate biosynthetic route to isoprenoid precursors is an essential metabolic pathway in plants, apicomplexan parasites, and many species of bacteria. The pathway relies on eight enzymes exploiting different cofactors and metal ions. Structural and mechanistic data now exist for most components of the pathway though there remain some gaps in our knowledge. The individual enzymes represent new, validated targets for broad spectrum antimicrobial drug and herbicide development. Detailed knowledge of the pathway may also be exploited to genetically modify microorganisms and plants to produce compounds of agricultural and medical interest.  相似文献   

20.
The lipids of Listeria monocytogenes   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号