首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Structure of tropical river food webs revealed by stable isotope ratios   总被引:7,自引:0,他引:7  
Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relationships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish δ15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. This was in contrast to our expectation that productive systems would promote longer food chains. Although isotope ratios could not resolve species-level feeding pathways, they did reveal how top consumers integrate isotopic variability occurring lower in the food web. Top piscivores, regardless of species, had carbon and nitrogen profiles less variable than other trophic groups.  相似文献   

2.
3.
We used stable isotopes of carbon, hydrogen and nitrogen to quantify the trophic position and resource use of larval sea lamprey Petromyzon marinus, four benthic macroinvertebrate functional feeding guilds (scraper, shredder, collector and predator) and other fishes in three rivers in eastern Canada. Larval lamprey and most invertebrate guilds foraged as primary consumers in all rivers whereas all other fishes predominantly foraged as secondary consumers. Larval lamprey obtained 75–85% of their resources from allochthonous derived material. This level exceeded all invertebrate guilds, which assimilated approximately 50% allochthonous and 50% autochthonous materials and fishes, which predominantly assimilated between 25% and 60% allochthonous material. Larval lamprey occupied a unique position within the river food webs analysed and show remarkable fidelity to a trophic niche specialising on terrestrially derived detritus.  相似文献   

4.
The persistence of plankton in flowing water presents an enigma, i.e., how can populations be sustained while constantly losing individuals downriver? We examined the distribution and abundance of zooplankton from 146 sites on the Missouri River (USA) and found large shifts in the dominance of major taxa between management zones of this regulated river. Crustacean zooplankton were dominant in the inter-reservoir zone of the river, and their taxonomic composition was similar to regional lakes and reservoirs. The exponential decline of cladocerans and copepods with distance from main-stem dams suggests that conditions within the river are adverse to population growth and that reservoirs are the main source of these crustaceans in the river. Rotifers dominated in the channelized zone of the river. High algal biomass and rapid population growth rates likely allow persistence of rotifers in segments of the river that do not receive direct reservoir inputs. Rotifers were less abundant in the inter-reservoir zone, suggesting that their numbers are limited by internal processes, such as food or predators. Since zooplankton are known to be an important food for larval fishes in rivers, this shift of major taxa in regulated rivers has implications for river food webs.  相似文献   

5.
Diets were estimated from stomach contents and the MixSIR model using stable isotope values for five co-existing and abundant benthic fishes in relation to potential prey from a riffle habitat in a tropical river in eastern Thailand. Collectively, aquatic insects were of greatest dietary importance based on stomach contents and, except for one fish species, predicted from the MixSIR. The most prominent functional feeding insect groups in fish diets were collector-filterers and scrapers and, to a lesser extent, predators. MixSIR predicted shrimp to be the most important single dietary constituent for all fishes in contrast to stomach contents, which indicated they are a major item for only one species. MixSIR predicted plant material to be more important in fish diets than stomach contents where the composition of detritus was a concern. Differences in temporal feeding schedules, prey availability, species adaptations and others are important in understanding diet and in the construction of food webs. Stable isotope and dietary analysis provides a more accurate assessment of the food web structure and dynamics of tropical river ecosystems than either method alone.  相似文献   

6.
7.
1. Mesocosms are used extensively by ecologists to gain a mechanistic understanding of ecosystems based on the often untested assumption that these systems can replicate the key attributes of natural assemblages. 2. Previous investigations of stream mesocosm utility have explored community composition, but here for the first time, we extend the approach to consider the replicability and realism of food webs in four outdoor channels (4 m(2)). 3. The four food webs were similarly complex, consisting of diverse assemblages (61-71 taxa) with dense feeding interactions (directed connectance 0.09-0.11). Mesocosm food web structural attributes were within the range reported for 82 well-characterized food webs from natural streams and rivers. When compared with 112 additional food webs from standing freshwater, marine, estuarine and terrestrial environments, stream food webs (including mesocosms) had similar characteristic path lengths, but typically lower mean food chain length and exponents for the species-link relationship. 4. Body size (M) abundance (N) allometric scaling coefficients for trivariate taxonomic mesocosm food webs (-0.53 to -0.49) and individual size distributions (-0.60 to -0.58) were consistent and similar to those from natural systems, suggesting that patterns of energy flux between mesocosm consumers and resources were realistic approximations. 5. These results suggest that stream mesocosms of this scale can support replicate food webs with a degree of biocomplexity that is comparable to 'natural' streams. The findings highlight the potential value of mesocosms as model systems for performing experimental manipulations to test ecological theories, at spatiotemporal scales of relevance to natural ecosystems.  相似文献   

8.
9.
Food web structure in riverine landscapes   总被引:7,自引:0,他引:7  
1. Most research on freshwater (and other) food webs has focused on apparently discrete communities, in well-defined habitats at small spatial and temporal scales, whereas in reality food webs are embedded in complex landscapes, such as river corridors. Food web linkages across such landscapes may be crucial for ecological pattern and process, however. Here, we consider the importance of large scale influences upon lotic food webs across the three spatial dimensions and through time.
2. We assess the roles of biotic factors (e.g. predation, competition) and physical habitat features (e.g. geology, land-use, habitat fragmentation) in moulding food web structure at the landscape scale. As examples, external subsidies to lotic communities of nutrients, detritus and prey vary along the river corridor, and food web links are made and broken across the land–water interface with the rise and fall of the flood.
3. We identify several avenues of potentially fruitful research, particularly the need to quantify energy flow and population dynamics. Stoichiometric analysis of changes in C : N : P nutrient ratios over large spatial gradients (e.g. from river source to mouth, in forested versus agricultural catchments), offers a novel method of uniting energy flow and population dynamics to provide a more holistic view of riverine food webs from a landscape perspective. Macroecological approaches can be used to examine large-scale patterns in riverine food webs (e.g. trophic rank and species–area relationships). New multivariate statistical techniques can be used to examine community responses to environmental gradients and to assign traits to individual species (e.g. body-size, functional feeding group), to unravel the organisation and trophic structure of riverine food webs.  相似文献   

10.
Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and--despite increasing interest in large-river studies--riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river's photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM) and non-algal material (tripton). CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances) at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous river ecosystems and a promising tool to study autotrophic functional properties. It confirms the usefulness of using the riverscape approach to study large-river ecosystems and initiate comparison along latitudinal gradients.  相似文献   

11.
The structure of food webs along river networks   总被引:1,自引:0,他引:1  
Do changes in the species composition of riverine fish assemblages along river networks lead to predictable changes in food‐web structure? We assembled empirical “fish‐centered” river food webs for three rivers located along a latitudinal gradient in the South Saskatchewan River Basin (SSRB) that differ in land‐use impacts and geomorphology but flow through similar mountain, foothill, and prairie physiographic regions. We then calculated 17 food‐web properties to determine whether the nine river food webs differed according to physiographic region or river sub‐basin. There were no statistically significant differences in the 17 food‐web properties calculated among the rivers. In contrast, fish species richness, connectance, the proportion of herbivores, and the proportion of cannibals changed longitudinally along the river network. Our results suggest that regional changes in river geomorphology and physicochemistry play an important role in determining longitudinal variation in food‐web properties such as fish species richness and connectance. In contrast, the overall structure of river food webs may be relatively similar and insensitive to regional influences such as zoogeography. Further explorations of river and other food webs would greatly illuminate this suggestion.  相似文献   

12.
Studying food webs across contrasting abiotic conditions is an important tool in understanding how environmental variability impacts community structure and ecosystem dynamics. The study of extreme environments provides insight into community‐wide level responses to environmental pressures with relevance to the future management of aquatic ecosystems. In the western Lake Eyre Basin of arid Australia, there are two characteristic and contrasting aquatic habitats: springs and rivers. Permanent isolated Great Artesian Basin springs represent hydrologically persistent environments in an arid desert landscape. In contrast, hydrologically variable river waterholes are ephemeral in space and time. We comprehensively sampled aquatic assemblages in contrasting ecosystem types to assess patterns in community composition and to quantify food web attributes with stable isotopes. Springs and rivers were found to have markedly different invertebrate communities, with rivers dominated by more dispersive species and springs associated with species that show high local endemism. Qualitative assessment of basal resources shows autochthonous carbon appears to be a key basal resource in both types of habitat, although the particular sources differed between habitats. Food‐web variables such as trophic length, trophic breadth, and community isotopic niche size were relatively similar in the two habitat types. The basis for the similarity in food‐web structure despite differences in community composition appears to be broader isotopic niches for predatory invertebrates and fish in springs as compared with rivers. In contrast to published theory, our findings suggest that the food webs of the hydrologically variable river sites may show less dietary generalization and more compact food‐web modules than in springs.  相似文献   

13.
Microbial food webs dominate heterotrophic food webs in large rivers with bacterial metabolism being a key component of carbon processing. Thus, analysis of bacterial population dynamics is critical to understanding patterns and mechanisms of material cycling and energy fluxes in large rivers. Within the frame of the Joint Danube Survey (JDS) 2007, the longitudinal development of the natural bacterial community in the Danube in terms of bacterial numbers, morphotype composition, and heterotrophic production of the suspended and particle-attached fractions was followed at a fine spatial resolution of approximately 30 km for the first time in such a large river along a 2,600-km stretch. Twenty-one major tributaries and branches were also included. This allowed us to investigate whether bacterial standing stock and production undergo continuous, linear changes or whether discontinuities and local processes like the merging of tributaries or the potential impact of sewage input drive the bacterial population in the Danube. The presented investigation revealed surprising continuous patterns of changes of bacterial parameters along the Danube River. Despite the presence of impoundments or hydropower plants, large municipalities, and the discharge of large tributaries, most bacterial parameters (standing stock, morphotype succession, and attached bacterial production) developed gradually, indicating that mainly broad-scale drivers and not local conditions shape and control the bacterial community in the midstream of this large river. As most important broad-scale drivers, nutrients (inorganic and organic) and changes in particle concentrations were identified. These data are also in remarkable accordance with the patterns of changes of the genetic bacterial community composition, observed during the first JDS (2001) 6 years before. In contrast, bacterial activity did not follow a continuous trend and was mainly controlled by the input of sewage from large cities in the middle section, leading to a bloom of phytoplankton. The observed patterns and the comparison between the Danube, its tributaries and other large rivers worldwide indicate that the bacterial community in rivers has a powerful indicator function for estimating the ecological status of large river ecosystems once enough information has been collected at various temporal and spatial scales.  相似文献   

14.
Studies on the Upper Mississippi River, particularly over the last 15 years, have contributed to our understanding of trophic processes in large rivers. The framework established by earlier population-specific studies, however, cannot be overlooked. Examination of the feeding habits of fish ranging from planktivores to piscivores gave the first indication that trophic processes were influenced by the spatial complexity and annual hydrological patterns of river-floodplain ecosystems. Experimental studies, which have often been considered impossible or impractical in large rivers, demonstrated the potential for biotic controls of system dynamics through predator–prey and competitive interactions. Such studies have been particularly helpful in understanding the potential impact of non-native species, including zebra mussels and Asian carp, to biodiversity and secondary production. Our understanding of riverine ecosystem function expanded greatly as food web studies began the application of a new tool—natural stable isotopes. Studies employing stable isotopes illustrated how food webs in a number of large rivers throughout the world are supported by the autochthonous production of microalgae. This study, coupled with other studies testing the prevailing models of riverine ecosystem function, has brought us to a point of better understanding the nature of river ecosystem functions. It is through looking back at the earlier studies of fish diet that we should realize that the temporal and spatial complexities of river ecosystem function must still be addressed more fully. This and a better grasp of the significance of the arrangement of patches within the riverine landscape will prove beneficial, as we assess the appropriate scale of river rehabilitation with an eye on how rehabilitation promotes productivity within complex ecosystems, including the Upper Mississippi River.  相似文献   

15.
Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial–aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)—the messenger between terrestrial and lake ecosystems—with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change‐driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice‐out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.  相似文献   

16.
Efforts to conserve, restore, or otherwise manage large rivers and the services they provide are hindered by limited understanding of the functional dynamics of these systems. This shortcoming is especially evident with regard to trophic structure and energy flow. We used natural abundances of carbon and nitrogen isotopes to examine patterns of material flow in ten large-river food webs characterized by different landscape-scale hydrologic characteristics (low-gradient river, high-gradient river, river stretches downstream of reservoirs, and reservoirs), and tested predictions from three ecosystem concepts commonly applied to large-rivers: The River Continuum Concept, The Flood Pulse Concept and the Riverine Productivity Model. Carbon derived from aquatic C3 plants and phytoplankton were the dominant energy sources supporting secondary consumers across the ten large-river food webs examined, but relative contributions differed significantly among landscape types. For low-gradient river food webs, aquatic C3 plants were the principal carbon source, contributing as much as 80% of carbon assimilated by top consumers, with phytoplankton secondarily important. The estimated relative importance of phytoplankton was greatest for food webs of reservoirs and river stretches downriver from impoundments, although aquatic C3 plants contributed similar amounts in both landscape types. Highest 99th percentile source contribution estimates for C4 plants and filamentous algae (both approximately 40%) were observed for high-gradient river food webs. Our results for low-gradient rivers supported predictions of the Flood Pulse Concept, whereas results for the three other landscape types supported the Riverine Productivity Model to varying degrees. Incorporation of landscape-scale hydrologic or geomorphic characteristics, such as river slope or floodplain width, may promote integration of fluvial ecosystem concepts. Expanding these models to include hydrologically impacted landscapes should lead to a more holistic understanding of ecosystem processes in large-river systems.  相似文献   

17.
Most rivers worldwide are highly regulated by anthropogenic activities through flow regulation and water pollution. Environmental flow regulation is used to reduce the effects of anthropogenic activities on aquatic ecosystems. Formulating flow alteration–ecological response relationships is a key factor in environmental flow assessment. Traditional environmental flow models are characterized by natural relationships between flow regimes and ecosystem factors. However, food webs are often altered from natural states, which disturb environmental flow assessment in such ecosystems. In ecosystems deteriorated by heavy anthropogenic activities, the effects of environmental flow regulation on species are difficult to assess with current modeling approaches. Environmental flow management compels the development of tools that link flow regimes and food webs in an ecosystem. Food web approaches are more suitable for the task because they are more adaptive for disordered multiple species in a food web deteriorated by anthropogenic activities. This paper presents a global method of environmental flow assessment in deteriorated aquatic ecosystems. Linkages between flow regimes and food web dynamics are modeled by incorporating multiple species into an ecosystem to explore ecosystem-based environmental flow management. The approach allows scientists and water resources managers to analyze environmental flows in deteriorated ecosystems in an ecosystem-based way.  相似文献   

18.
Food webs and river drainages are both hierarchical networks and complex adaptive systems. How does living within the second affect the first? Longitudinal gradients in productivity, disturbance regimes and habitat structure down rivers have long interested ecologists, but their effects on food web structure and dynamics are just beginning to be explored. Even less is known about how network structure per se influences river and riparian food webs and their members. We offer some preliminary observations and hypotheses about these interactions, emphasizing observations on upstream–downstream changes in food web structure and controls, and introducing some ideas and predictions about the unexplored question of food web responses to some of the network properties of river drainages.  相似文献   

19.
Glacier retreat is occurring across the world, and associated river ecosystems are expected to respond more rapidly than those in flowing waters in other regions. The river environment directly downstream of a glacier snout is characterised by extreme low water temperature and unstable channel sediments but these habitats may become rarer with widespread glacier retreat. In these extreme environments food web dynamics have been little studied, yet they could offer opportunities to test food web theories using highly resolved food webs owing to their low taxonomic richness. This study examined the interactions of macroinvertebrate and diatom taxa in the Ödenwinkelkees river, Austrian central Alps between 2006 and 2011. The webs were characterised by low taxon richness (13–22), highly connected individuals (directed connectance up to 0.19) and short mean food chain length (2.00–2.36). The dominant macroinvertebrates were members of the Chironomidae genus Diamesa and had an omnivorous diet rich in detritus and diatoms as well as other Chironomidae. Simuliidae (typically detritivorous filterers) had a diet rich in diatoms but also showed evidence of predation on Chironomidae larvae. Food webs showed strong species-averaged and individual size structuring but mass-abundance scaling coefficients were larger than those predicted by metabolic theory, perhaps due to a combination of spatial averaging effects of patchily distributed consumers and resources, and/or consumers deriving unquantified resources from microorganisms attached to the large amounts of ingested rock fragments. Comparison of food web structural metrics with those from 62 published river webs suggest these glacier-fed river food web properties were extreme but in line with general food web scaling predictions, a finding which could prove useful to forecast the effects of anticipated future glacier retreat on the structure of aquatic food webs.  相似文献   

20.

The widespread introduction of non-native fishes has contributed to freshwater ecosystems being considered among the most altered ecosystems globally. Of particular concern are invasive planktivorous fishes (e.g., silver carp Hypophthalmichthys molitrix and bighead carp H. nobilis, collectively known as bigheaded carps) that have the potential to modify basal food web structure and compete for planktonic resources with native planktivores and young-of-year fishes. Bigheaded carps have proliferated throughout the Mississippi River basin, creating an outsized potential for resource competition with native fishes. Studies have showed niche overlap between bigheaded carps and native planktivores is generally high but that overlap varies among rivers. Importantly, niche overlap has not been assessed for density extremes of bigheaded carps within a river to determine whether trophic niches changed as a result of the invasion. The objectives of this study were to determine whether (1) silver and/or bighead carps share a similar isotopic niche with four native planktivores, and (2) that association varies ecologically (i.e., low- and high-densities of bigheaded carps) and spatially (i.e., between rivers). Our results generally show high trophic overlap among species, suggesting potential direct resource competition. Niche overlap was higher in study reaches with low densities of bigheaded carps compared to reaches with high densities, presumably due to intense resource competition and limiting of resources under high densities of bigheaded carps. Across density extremes, trophic reorganization by bigmouth buffalo (Ictiobus cyprinellus) was divergent from other native planktivores. Species-specific responses may be due to subtle differences in feeding strategies, degree of planktivory, food selectivity, and correlated food size distributions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号