首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested whether directional selection on an index-based wing character in Drosophila melanogaster affected developmental stability and patterns of directional asymmetry. We selected for both an increase (up selection) and a decrease (down selection) of the index value on the left wing and compared patterns of fluctuating and directional asymmetry in the selection index and other wing traits across selection lines. Changes in fluctuating asymmetry across selection lines were predominantly small, but we observed a tendency for fluctuating asymmetry to decrease in the up-selected lines in both replicates. Because changes in fluctuating asymmetry depended on the direction of selection, and were not related to changes in trait size, these results fail to support existing hypotheses linking directional selection and developmental stability. Selection also produced a pattern of directional asymmetry that was similar in all selected lines whatever the direction of selection. This result may be interpreted as a release of genetic variance in directional asymmetry under selection.  相似文献   

2.
Stabilizing selection for a set of morphometric wing traits was combined with directional selection for increased expression of radius incompletus (ri) mutation of Drosophila melanogaster. Three experimental regimens were used: directional and stabilizing selection (stabilized lines); directional selection (unstabilized lines); no selection (control lines). The dynamics of two fitness-associated parameters (coefficient of fluctuating asymmetry and population size) was registered during the experiment. At the end of experiment, selection competitive ability test was carried out. The competitive indices did not significantly differ under various treatments, while fluctuating asymmetry was significantly lower in stabilized than in unstabilized lines. Average population size was greater in stabilized lines as compared to the unstabilized ones. The possible causes for these differences are discussed.  相似文献   

3.
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson–Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date — repeatedly described as more evolutionarily stable than expected — so this skewness should be accounted for when investigating evolutionary dynamics in the wild.  相似文献   

4.
We considered genome‐wide four‐fold degenerate sites from an African Drosophila melanogaster population and compared them to short introns. To include divergence and to polarize the data, we used its close relatives Drosophila simulans, Drosophila sechellia, Drosophila erecta and Drosophila yakuba as outgroups. In D. melanogaster, the GC content at four‐fold degenerate sites is higher than in short introns; compared to its relatives, more AT than GC is fixed. The former has been explained by codon usage bias (CUB) favouring GC; the latter by decreased intensity of directional selection or by increased mutation bias towards AT. With a biallelic equilibrium model, evidence for directional selection comes mostly from the GC‐rich ancestral base composition. Together with a slight mutation bias, it leads to an asymmetry of the unpolarized allele frequency spectrum, from which directional selection is inferred. Using a quasi‐equilibrium model and polarized spectra, however, only purifying and no directional selection is detected. Furthermore, polarized spectra are proportional to those of the presumably unselected short introns. As we have no evidence for a decrease in effective population size, relaxed CUB must be due to a reduction in the selection coefficient. Going beyond the biallelic model and considering all four bases, signs of directional selection are stronger. In contrast to short introns, complementary bases show strand specificity and allele frequency spectra depend on mutation directions. Hence, the traditional biallelic model to describe the evolution of four‐fold degenerate sites should be replaced by more complex models assuming only quasi‐equilibrium and accounting for all four bases.  相似文献   

5.
Characters in animals used in signalling and subjected to strong directional selection often demonstrate (i) an elevated level of fluctuating asymmetry (small random deviations from bilateral symmetry) and (ii) a negative relationship between the degree of individual fluctuating asymmetry and the size of a given character. We tested these two predictions in plants since flowers are subjected to strong directional selection and are involved in signalling to pollinators, whereas leaves are supposed not to be directly involved in signalling. The overall level of fluctuating asymmetry in a number of plant species with bilaterally or radially symmetric flowers was not generally higher in floral traits than in leaves. The level of fluctuating asymmetry in plants was sometimes significantly consistent within individuals. The absolute degree of individual fluctuating asymmetry in floral traits was generally negatively related to the size of the trait, while there was a positive relationship for leaves. The degree of individual fluctuating asymmetry in floral traits was marginally negatively related to the degree of individual fluctuating asymmetry in leaf traits. These patterns of fluctuating asymmetry in plants suggest that (i) the degree of asymmetry in flowers signals different aspects of quality than does the degree of asymmetry in leaves, and that (ii) fluctuating asymmetry in flowers often reflects the phenotypic quality of individual plants.  相似文献   

6.
Developmental stability reflects the ability of a genotype to develop in the same way under varying environmental conditions. Deviations from developmental stability, arising from disruptive effects of environmental and genetic stresses, can be measured in terms of fluctuating asymmetry, a particularly sensitive indicator of the ability to cope with these stresses during ontogeny. In an inbred Adriatic island population, we expected dental arch fluctuating asymmetry 1) to be higher than in an outbred sample from the same island, and 2) within this population, to increase with the level of inbreeding. Due to environmental stress, we also expected to find higher fluctuating asymmetry in the outbred island population than in an urban reference group from the same country. The material consisted of 506 dental casts of 253 children from 1) the island of Hvar, and 2) Zagreb, Croatia. Three-dimensional coordinates of 26 landmarks spanning the arches were digitized. The analysis partitioned the asymmetry of arch forms into components for directional and fluctuating bilateral asymmetry, using the appropriate Procrustes method (geometric morphometrics). The results corroborated the hypotheses. Fluctuating asymmetry was found to be higher on the island than in Zagreb in all groups and in both jaws, and increased significantly with endogamy level in the lower jaw. There was no significant directional asymmetry in the Zagreb sample and likewise none in the upper jaws of the outbred island group, but significant directional asymmetry in both jaws of the inbred population and also in the lower jaws of the outbred island group. These results suggest an environmental as well as a genetic influence on dental arch asymmetry. Although the lower jaws expressed these two stresses almost additively, the upper jaws appeared to be better buffered. The role of directional asymmetry as a potential indicator of craniofacial developmental instability clearly merits further attention.  相似文献   

7.
The functional significance of the marked directional asymmetry in testes size observed in many bird species is obscure. Møller suggested that (i) the smaller of the two testes serves a compensatory role and increases in size (and hence reduces asymmetry) when the larger one is defective in some way, and (ii) as a consequence, the degree of directional asymmetry in testes size reflects male quality and covaries positively with the expression of secondary sexual traits. We conducted an experimental test of these two hypotheses in the zebra finch, Taeniopygia guttata. Neither hypothesis was supported. First, there was no significant relationship between the size of the left testis and relative testes asymmetry. Second, we obtained no support for the hypothesis that the degree of directional asymmetry in testes mass covaried with condition. On the contrary, directional asymmetry in testes mass was significantly greater in birds whose condition was experimentally reduced, compared with control birds. Moreover, we found no significant relationships between testes asymmetry and secondary sexual traits. We conclude that directional asymmetry in testes size does not reflect male condition in the zebra finch.  相似文献   

8.
Abstract Three major types of bilateral asymmetry (fluctuating asymmetry, directional asymmetry, and antisymmetry) have long been recognized in the literature. Little, however, is known about transitions between asymmetry types, especially in natural populations. It is often assumed that directional asymmetry and antisymmetry have a larger genetic basis than fluctuating asymmetry. This leads many scientists to exclude traits or populations showing either directional asymmetry or antisymmetry from developmental instability studies, focusing attention on fluctuating asymmetry alone. This procedure may bias the findings and thus our understanding of patterns of bilateral asymmetry and the factors influencing it. To examine changes in bilateral asymmetry across the distribution range of a species, I studied the length of the third toe in 11 chukar partridge (Alectoris chukar) populations across a steep environmental gradient of 320 km within the species' range in Israel. This trait was selected due to its adaptive value in the chukar, a species that spends much of its activity walking, and due to its high measurement repeatability. Moving from the core toward the very extreme periphery of the range, the following four trends are detected: (1) the expression of the directional asymmetry component significantly increases; (2) the frequency of symmetrical individuals in the population significantly decreases, with a sharp decline at the steepest part of the climatic and environmental gradient studied, within the Mediterranean‐desert ecotone; (3) mean asymmetry levels, as estimated using the unsigned difference between the right and left toe, significantly increases; and (4) the range of asymmetry increases such that the most asymmetrical individuals originate from the very edge of the range. These findings provide primary evidence that substantial shifts in asymmetry may occur across short geographical distances within a species' distribution range. They show a continuum between asymmetry types and support the notion that all three types of asymmetry can reflect developmental instability. Further studies of developmental instability should be designed so that they enable detection of transitions between asymmetry types across natural populations. Such a procedure may partly resolve some of the contradictions seen in the literature regarding the relationship between bilateral asymmetry and environmental stress.  相似文献   

9.
Stabilizing selection for a set of morphometric wing traits was combined with directional selection for the increased expression of radius incompletus (ri) mutation of Drosophila melanogaster. Three experimental regimes were used: directional and stabilizing selection (stabilized lines); directional selection (unstabilized lines); no selection (controls). Response to selection for ri expression was similar in all selected lines but variation of this character was higher in the unstabilized lines compared to the stabilized ones. The competitive indices measured after termination of selection did not significantly differ under different treatments while fluctuating asymmetry was significantly lower in stabilized than in unstabilized lines. The possible causes of these differences are discussed.  相似文献   

10.
Developmental instability (DI) is the sensitivity of a developing trait to random noise and can be measured by degrees of directionally random asymmetry [fluctuating asymmetry (FA)]. FA has been shown to increase with loss of genetic variation and inbreeding as measures of genetic stress, but associations vary among studies. Directional selection and evolutionary change of traits have been hypothesized to increase the average levels of FA of these traits and to increase the association strength between FA and population‐level genetic variation. We test these two hypotheses in three‐spined stickleback (Gasterosteus aculeatus L.) populations that recently colonized the freshwater habitat. Some traits, like lateral bone plates, length of the pelvic spine, frontal gill rakers and eye size, evolved in response to selection regimes during colonization. Other traits, like distal gill rakers and number of pelvic fin rays, did not show such phenotypic shifts. Contrary to a priori predictions, average FA did not systematically increase in traits that were under presumed directional selection, and the increases observed in a few traits were likely to be attributable to other factors. However, traits under directional selection did show a weak but significantly stronger negative association between FA and selectively neutral genetic variation at the population level compared with the traits that did not show an evolutionary change during colonization. These results support our second prediction, providing evidence that selection history can shape associations between DI and population‐level genetic variation at neutral markers, which potentially reflect genetic stress. We argue that this might explain at least some of the observed heterogeneities in the patterns of asymmetry.  相似文献   

11.
Both strong directional selection and faster development are thought to destabilize development, giving rise to greater fluctuating asymmetry (FA), although there is no strong empirical evidence supporting this assertion. We compared FA in sternopleural bristle number in four populations ofDrosophila melanogaster successfully selected for faster development from egg to adult, and in four control populations. The fraction of perfectly symmetric individuals was higher in the selected populations, whereas the FA levels did not differ significantly between selected and control populations, clearly indicating that directional selection for faster development has not led to increased FA in sternopleural bristle number in these populations. This may be because: (i) development time and FA are uncorrelated, (ii) faster development does result in FA, but selection has favoured developmentally stable individuals that can develop fast and still be symmetrical, or (iii) the increased fraction of symmetric individuals in the selected populations is an artifact of reduced body size. Although we cannot discriminate among these explanations, our results suggest that the relationship between development time, FA and fitness may be far more subtle than often thought.  相似文献   

12.
Charles M. Woolf 《Genetica》1997,101(3):199-208
Arabian bay horses manifest, on the average, more common white markings in their hind legs than their forelegs (anteroposterior asymmetry) and more common white markings in their left legs than their right legs (directional asymmetry). To determine if genetic variation exists for these types of asymmetry, the phenotypic response was studied in bay foals when their dams and sires were selected for the directions of fore-hind and left-right differences. In the fore-hind studies, the quantitative shifts in the bay foals were in the direction specified by the selection scheme and the observed deviations were all statistically significant. The shifts were also consistently in the direction favored by selection in the left-right studies, but only two of six observed deviations were statistically significant using a one-tailed test of significance. Thus, only marginal statistical evidence is available to support the observed consistent responses to selection in the left-right studies. These differential responses are reflected in the magnitudes of the heritability estimates. Based on the overall results, it is concluded that both types of asymmetry have a genetic basis in the Arabian horse, but much more genetic variation is present for anteroposterior asymmetry than for directional asymmetry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Fluctuating asymmetry (FA) is claimed both to provide a means of evaluating developmental stability, and to reflect an individual's quality or the stress experienced during development. FA refers to the nondirectional variation between left and right sides, whereas directional asymmetry (DA) refers to a significant directional variation between the sides. We studied four eyespots on the dorsal forewing of the tropical butterfly, Bicyclus anynana. Two of the eyespots were specified by a mutant allele, Spotty, that was fixed in the stock. These eyespots showed higher FA than the two flanking, wild-type eyespots, although they are all formed by the same developmental pathway. We applied artificial selection for lower FA of the novel eyespots in an attempt to increase their developmental stability. There was significant variation present in individual FA in our study. However, this did not change as a result of the artificial selection. Most of the variation in FA can be accounted for by individual differences in developmental stability rather than by the applied selection or by environmental variation. Thus, it was not possible to produce any increased developmental stability of the novel eyespots by selecting for low FA. The estimates of realized heritability for both FA and DA of each eyespot were not significantly different from zero. The results suggest that FA provides little, if any, potential for exploring the mechanistic basis of developmental stability.  相似文献   

14.
Abstract 1. The form of asymmetry in bilateral organs usually follows the same pattern within single populations. However, some exceptions may occur when a population consists of different phenotypes that are from different ontogenic backgrounds and under different selective pressures. We investigated the asymmetric patterns of mandibles of larvae, females, and males in the stag beetle Prosopocoilus inclinatus. 2. Larval mandibles exhibited directional asymmetry both in length and cross direction, whereas female mandibles showed directional asymmetry in cross direction. These asymmetric structures might be more effective in cutting wood fibres. 3. For the relation of male mandible length to body size, a model with a switch point showed a better fit to the data than a convex curve model. This shows that the males are dimorphic with two distinct morphs. 4. The form of asymmetry in male mandible length differed between the morphs. The smaller males exhibited left‐biased directional asymmetry in common with larvae, whereas the larger males exhibited fluctuating asymmetry. 5. This is a novel finding of a morph‐dependent asymmetry. The morph‐dependent asymmetry in males may be as a result of different selection on each morph or a developmental constraint from larval mandibles to adult ones.  相似文献   

15.
The fundamental equation in evolutionary quantitative genetics, the Lande equation, describes the response to directional selection as a product of the additive genetic variance and the selection gradient of trait value on relative fitness. Comparisons of both genetic variances and selection gradients across traits or populations require standardization, as both are scale dependent. The Lande equation can be standardized in two ways. Standardizing by the variance of the selected trait yields the response in units of standard deviation as the product of the heritability and the variance-standardized selection gradient. This standardization conflates selection and variation because the phenotypic variance is a function of the genetic variance. Alternatively, one can standardize the Lande equation using the trait mean, yielding the proportional response to selection as the product of the squared coefficient of additive genetic variance and the mean-standardized selection gradient. Mean-standardized selection gradients are particularly useful for summarizing the strength of selection because the mean-standardized gradient for fitness itself is one, a convenient benchmark for strong selection. We review published estimates of directional selection in natural populations using mean-standardized selection gradients. Only 38 published studies provided all the necessary information for calculation of mean-standardized gradients. The median absolute value of multivariate mean-standardized gradients shows that selection is on average 54% as strong as selection on fitness. Correcting for the upward bias introduced by taking absolute values lowers the median to 31%, still very strong selection. Such large estimates clearly cannot be representative of selection on all traits. Some possible sources of overestimation of the strength of selection include confounding environmental and genotypic effects on fitness, the use of fitness components as proxies for fitness, and biases in publication or choice of traits to study.  相似文献   

16.
A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a left-right axis during development, a level of differentiation whose existence has been questioned for insects. Wing asymmetry of this magnitude has implications for questions in areas of development, natural selection, flight, mate selection and communication in insects. The 'handicap principle' provides a possible explanation: females will choose a mate with the greatest handicap because his survival, in spite of his handicap, is a measure of his genetic superiority.  相似文献   

17.
Subtle left-right biases are often observed in organisms with an overall bilateral symmetry. The evolutionary significance of these directional asymmetries remains uncertain, however, and scenarios of both developmental constraints and adaptation have been suggested. Reviewing the literature on asymmetry in insect wings, we analyze patterns of directional asymmetry in wing size to evaluate the possible adaptive significance of this character. We found that directional asymmetry in wing size is widespread among insects, with left- and right-biased asymmetries commonly observed. The direction of the asymmetry does not appear to be evolutionarily conserved above the species level. Overall, we argue that the very small magnitude of directional asymmetry, 0.7% of the wing size on average, associated with an extremely imprecise expression, precludes directional asymmetry from playing any major adaptive role.  相似文献   

18.
Sexual selection is known to operate at medfly leks with a few males gaining a high proportion of matings. However, specific male characteristics subject to sexual selection have not been identified. Here we report laboratory studies indicating that directional sexual selection operates on the level of fluctuating asymmetry (FA) in the superior frontal orbital setae (sex setae), with symmetrical males gaining more matings. Studies relating mating success with FA in a male trait have generally been taken as evidence of the operation of indirect sexual selection. For a male trait to acts as a reliable indicator of fitness, FA in the male trait should be negatively associated with trait size and females should mate with the males with the most exaggerated form of the trait. However no association was found between seta FA and mean seta length. In addition sexual selection did not appear to operate on mean trait size, although males with an intermediate sex seta to wing length ratio did achieve higher mating success, indicating that stabilizing sexual selection operates on this relative dimension. It is suggested that differences in male competitive ability may provide an alternative explanation of how such associations between mating success and FA in male characteristics can arise.  相似文献   

19.
Breasts of human females are large compared to those of closely related primate species, and they can thus be hypothesized recently or currently to have been subject to directional sexual selection. Here we show that (1) large breasts have higher levels of fluctuating asymmetry than small breasts, (2) breast fluctuating asymmetry is higher in women without children than in women with at least one child, (3) breast fluctuating symmetry is a reliable predictor of age-independent fecundity, and (4) breast fluctuating symmetry appears to be associated with sexual selection. These conclusions were similar in studies from two cultures differing in fecundity and breastfeeding traditions (Spain; New Mexico, U.S.A.). Choosy males that prefer females with symmetrical breasts may experience a direct fitness benefit in terms of increased fecundity and an indirect benefit in terms of attractive or fecund daughters.  相似文献   

20.
Fluctuating asymmetry (FA) in ornamental characters may reflect developmental stability in the translation from genotype to phenotype. Antlers of reindeer show FA, are visually conspicuous ornaments and are important in intraspecific assessment. We show that there is a negative relationship between size and asymmetry in visual antler characteristics (i.e., antler length and number of tines) among free-ranging male reindeer in rut. This indicates that individuals that develop large ornaments are better able to buffer developmental stress than individuals that develop small ornaments. There is no relationship between asymmetry in antler length and asymmetry in jaw length, suggesting that symmetry in antlers does not reflect overall body symmetry. This difference may be caused by trait-specific sensitivity to developmental stress. Such stress may partly be caused by parasites, which show a positive association with asymmetry in antlers, but no relationship to asymmetry in jaws. Our results indicate that antlers may be exposed to directional selection in a visual signaler-receiver system and that information about parasite burden may be obtained from evaluation of asymmetry in antlers developed under exposure to a multitude of environmental stresses. Received: 8 October 1996 / Accepted: 13 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号