首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Aims: To study the genetic relatedness between V. cholerae isolates from Iran and other countries based on housekeeping gene recA sequence analysis. Methods and Results: A 995‐bp region of the recA gene from 24 V. cholerae isolates obtained from human and surface water origins in Iran over a 5‐year period was sequenced and compared with the sequence data from the isolates belonging to other places. Cluster analysis of the constructed dendrogram based on recA sequence divergence for our clinical isolates showed one sequence type (ST), whereas environmental isolates revealed eight STs. Interestingly, one of our environmental isolates was intermixed with clinical isolates in the largest cluster containing the epidemic strains. Our 24 isolates plus 198 global isolates available in the GenBank showed 77 sequence types (STs) with at least one nucleotide difference. Conclusions: Our result suggested that recA sequencing is a reliable analysis method for understanding the relatedness of the local isolates with the isolates obtained elsewhere. Significance and Impact of the Study: Understanding the genetic relatedness between V. cholerae isolates could give insights into the health care system for better control and prevention of the cholera.  相似文献   

2.
The aim of this study was to investigate the presence of TCP gene clusters among clinical and environmental Vibrio cholerae isolates and to explore the genetic relatedness of isolates using ribotyping technique. A total of 50 V. cholerae strains (30 clinical and 20 environmental) were included in this study. Three clinical isolates were negative for TCP cluster genes while the cluster was absent in all of the environmental strains. Ribotyping of rRNA genes with BglI produced 18 different ribotype patterns, three of which belonged to clinical O1 serotype isolates. The remaining 15 ribotypes belonged to clinical non-O1, non-O139 serogroups (two patterns) and environmental non-O1, non-O139 serogroups (13 patterns). Clinical V. cholerae O1 strains from 2004 through 2006 and several environmental non-O1, non-O139 V. cholerae strains from 2006 showed 67.3 % similarity and fell within one single gene cluster. Ribotyping analysis made it possible to further comprehend the close originality of clinical isolates as very little changes have been occurred within rRNA genes of different genotypes of V. cholerae strains through years. In conclusion, ribotyping analysis of environmental V. cholerae isolates showed a substantial genomic diversity supporting the fact that genetic changes within bacterial genome occurs during years in the environment, while only little changes may arise within the genome of clinical isolates.  相似文献   

3.
A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.  相似文献   

4.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

5.
Non-O1/non-O139 Vibrio cholerae inhabits estuarine and coastal waters globally, but its clinical significance has not been sufficiently investigated, despite the fact that it has been associated with septicemia and gastroenteritis. The emergence of virulent non-O1/non-O139 V. cholerae is consistent with the recognition of new pathogenic variants worldwide. Oyster, sediment, and water samples were collected during a vibrio surveillance program carried out from 2009 to 2012 in the Chesapeake Bay, Maryland. V. cholerae O1 was detected by a direct fluorescent-antibody (DFA) assay but was not successfully cultured, whereas 395 isolates of non-O1/non-O139 V. cholerae were confirmed by multiplex PCR and serology. Only a few of the non-O1/non-O139 V. cholerae isolates were resistant to ampicillin and/or penicillin. Most of the isolates were sensitive to all antibiotics tested, and 77 to 90% carried the El Tor variant hemolysin gene hlyAET, the actin cross-linking repeats in toxin gene rtxA, the hemagglutinin protease gene hap, and the type 6 secretion system. About 19 to 21% of the isolates carried the neuraminidase-encoding gene nanH and/or the heat-stable toxin (NAG-ST), and only 5% contained a type 3 secretion system. None of the non-O1/non-O139 V. cholerae isolates contained Vibrio pathogenicity island-associated genes. However, ctxA, ace, or zot was present in nine isolates. Fifty-five different genotypes showed up to 12 virulence factors, independent of the source of isolation, and represent the first report of both antibiotic susceptibility and virulence associated with non-O1/non-O139 V. cholerae from the Chesapeake Bay. Since these results confirm the presence of potentially pathogenic non-O1/non-O139 V. cholerae, monitoring for total V. cholerae, regardless of serotype, should be done within the context of public health.  相似文献   

6.
Vibrio cholerae, the causative agent of cholera is ubiquitously distributed in aquatic environment particularly in coastal waters, estuaries, and rivers. In the present investigation, a multiplex PCR assay was developed for the detection of virulence-associated genes (rtxA, tcpA, ctxA, hlyA, and sto) in environmental isolates of V. cholerae. A total of 90 strains isolated from different environmental sources were screened for the presence of virulence-associated genes. Our results showed that this method represents a simple, cost effective, and robust tool for rapid detection of virulence-associated genes. This multiplex PCR can be used for examining prevalence of virulence-associated genes and hence will be useful for better understanding of epidemiology of environmental V. cholerae.  相似文献   

7.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

8.
Vibrio cholerae, the causing agent of cholera is still a major health challenge in most of the developing countries. In this study, V. cholerae strains collected from different cholera outbreaks in India over a period of past 7 years were found to have various toxigenic, pathogenic and regulatory genes viz. ctxAB, zot, tcp, hlyA, ace, ompU, ompW, rfbO1, toxT and toxR. The biotype specific genes rstR and rtxC revealed the El Tor biotype in majority of the isolates. However, variants among the isolates were found having genotype of both the biotypes. Sequencing of ctxB gene revealed the presence of altered ctxB of classical biotype with additional variations in isolates of 2007. Mismatch amplification mutation assay PCR also confirmed the isolates belonging to classical biotype. Antibiogram of the isolates revealed resistance for nalidixic acid, co-trimoxazole, streptomycin, and polymyxin B and susceptibility for tetracycline among most of the isolates from India. However, V. cholerae isolates from a recent outbreak in Eastern India were resistant to tetracycline. The study corroborated the continuous emergence and wide-spread of multidrug resistant El Tor variant strains in the Indian subcontinent.  相似文献   

9.
10.
Studies of Vibrio cholerae diversity have focused primarily on pathogenic isolates of the O1 and O139 serotypes. However, autochthonous environmental isolates of this species routinely display more extensive genetic diversity than the primarily clonal pathogenic strains. In this study, genomic and metabolic profiles of 41 non-O1/O139 environmental isolates from central California coastal waters and four clinical strains are used to characterize the core genome and metabolome of V. cholerae. Comparative genome hybridization using microarrays constructed from the fully sequenced V. cholerae O1 El Tor N16961 genome identified 2,787 core genes that approximated the projected species core genome within 1.6%. Core genes are almost universally present in strains with widely different niches, suggesting that these genes are essential for persistence in diverse aquatic environments. In contrast, the dispensable genes and phenotypic traits identified in this study should provide increased fitness for certain niche environments. Environmental parameters, measured in situ during sample collection, are correlated to the presence of specific dispensable genes and metabolic capabilities, including utilization of mannose, sialic acid, citrate, and chitosan oligosaccharides. These results identify gene content and metabolic pathways that are likely selected for in certain coastal environments and may influence V. cholerae population structure in aquatic environments.  相似文献   

11.
Vibrio cholerae non-O1, non-O139 was isolated from natural surface waters from different sites sampled in diarrhea endemic zones in Kolkata, India. Twenty-one of these isolates were randomly selected and included in the characterization. The multiserogroup isolates were compared by their virulence traits with a group of clinical non-O1, non-O139 isolates from the same geographic area. Of the 21 environmental isolates, 6 and 14 strains belonged to Heiberg groups I and II, respectively. Three of the environmental isolates showed resistance to 2,2-diamine-6,7-diisopropylpteridine phosphate. All of the non-O1, non-O139 strains were positive for toxR, and except for one environmental isolate, none of them were positive for tcpA in the PCR assay. None of the isolates were positive for genes encoding cholera toxin (ctxA), heat-stable toxin (est), heat-labile toxin (elt), and Shiga toxin variants (stx) of Escherichia coli. Additionally, except for one environmental isolate (PC32), all were positive for the gene encoding El Tor hemolysin (hly). The culture supernatants of 86% (18 of 21) of the environmental isolates showed a distinct cytotoxic effect on HeLa cells, and some of these strains also produced cell-rounding factor. The lipase, protease, and cell-associated hemagglutination activities and serum resistance properties of the environmental and clinical isolates did not differ much. However, seven environmental isolates exhibited very high hemolytic activities (80 to 100%), while none of the clinical strains belonged to this group. The environmental isolates manifested three adherence patterns, namely, carpet-like, diffuse, and aggregative adherence, and the clinical isolates showed diffuse adherence on HeLa cells. Of the 11 environmental isolates tested for enteropathogenic potential, 8 (73%) induced positive fluid accumulation (≥100) in a mouse model, and the reactivities of these isolates were comparable to those of clinical strains of non-O1, non-O139 and toxigenic O139 V. cholerae. Comparison of the counts of the colonized environmental and clinical strains in the mouse intestine showed that the organisms of both groups had similar colonizing efficiencies. These findings indicate the presence of potentially pathogenic V. cholerae non-O1, non-O139 strains in surface waters of the studied sites in Kolkata.  相似文献   

12.
Of the 200+ serogroups of Vibrio cholerae, only O1 or O139 strains are reported to cause cholera, and mostly in endemic regions. Cholera outbreaks elsewhere are considered to be via importation of pathogenic strains. Using established animal models, we show that diverse V. cholerae strains indigenous to a non-endemic environment (Sydney, Australia), including non-O1/O139 serogroup strains, are able to both colonize the intestine and result in fluid accumulation despite lacking virulence factors believed to be important. Most strains lacked the type three secretion system considered a mediator of diarrhoea in non-O1/O13 V. cholerae. Multi-locus sequence typing (MLST) showed that the Sydney isolates did not form a single clade and were distinct from O1/O139 toxigenic strains. There was no correlation between genetic relatedness and the profile of virulence-associated factors. Current analyses of diseases mediated by V. cholerae focus on endemic regions, with only those strains that possess particular virulence factors considered pathogenic. Our data suggest that factors other than those previously well described are of potential importance in influencing disease outbreaks.  相似文献   

13.
V. cholerae, V. parahaemolyticus, and V. vulnificus are recognized human pathogens. Although several studies are available worldwide, both on environmental and clinical contexts, little is known about the ecology of these vibrios in African coastal waters. In this study, their co-occurrence and relationships to key environmental constraints in the coastal waters of Guinea-Bissau were examined using the most probable number-polymerase chain reaction (MPN-PCR) approach. All Vibrio species were universally detected showing higher concentrations by the end of the wet season. The abundance of V. cholerae (ISR 16S-23S rRNA) ranged 0–1.2 × 104 MPN/L, whereas V. parahaemolyticus (toxR) varied from 47.9 to 1.2 × 105 MPN/L. Although the presence of genotypes associated with virulence was found in environmental V. cholerae isolates, ctxA+ V. cholerae was detected, by MPN-PCR, only on two occasions. Enteropathogenic (tdh+ and trh+) V. parahaemolyticus were detected at concentrations up to 1.2 × 103 MPN/L. V. vulnificus (vvhA) was detected simultaneously in all surveyed sites only at the end of the wet season, with maximum concentrations of 1.2 × 105 MPN/L. Our results suggest that sea surface water temperature and salinity were the major environmental controls to all Vibrio species. This study represents the first detection and quantification of co-occurring Vibrio species in West African coastal waters, highlighting the potential health risk associated with the persistence of human pathogenic Vibrio species.  相似文献   

14.
We used gene sequencing to determine whether clinical (sporadic, epidemic, and endemic) and environmental isolates of Legionella pneumophila serogroup (sg) 1 belong to specific lineages. A total of 178 clinical and environmental L. pneumophila sg 1 isolates, defined by pulsed-field gel electrophoresis and epidemiological data as sporadic, epidemic, or endemic, were analyzed for polymorphisms in five gene fragments. The fragments belonged to three housekeeping genes (coding for aconitase [acn], aspartate-β-semialdehyde dehydrogenase [asd], and RNA polymerase β subunit [rpoB]) and two surface protein genes (coding for the macrophage infectivity potentiator [mip] and the major outer membrane protein [mompS]). The phylogenetic tree inferred from sequence polymorphisms of the five genes identified two large clusters, one consisting of 133 poorly differentiated strains and containing two smaller clusters (10 and 2 strains) unrelated to each other and the other consisting of 42 strains. Clinical and environmental isolates could not be distinguished on this basis, and no link between genetic background and epidemiological type was found, suggesting that other factors are responsible for differences in pathogenicity.  相似文献   

15.
The distribution ofVibrio cholerae was examined in 2 Florida estuaries, Apalachicola and Tampa Bay.Vibrio cholerae serotype non-01 was the most abundant serotype, being isolated from 45% of the oyster samples, 30% of the sediments, 50% of the waters, and 75% of the blue crabs.Vibrio cholerae serotype 01 was isolated from only one oyster sample. Strong linear correlations betweenV. cholerae and temperature, salinity, or the other physical/chemical parameters measured,Escherichia coli, or fecal coliforms were not observed, but a range of temperatures and salinities appeared relevant to the distribution of the organism. The organism was present in the highest concentrations when salinities were 10‰–25‰ and temperatures were 20?C–35?C.In vitro growth curves of 95V. cholerae environmental isolates further supported that 10‰–25‰ was an ideal salinity range for the organisms. The results suggest thatV. cholerae is a widely distributed organism in the nutrient-rich warm waters of the Gulf Coast estuaries.  相似文献   

16.
Forty-four Vibrio cholerae isolates collected over a 7-month period in Chennai, India in 2004 were characterized for gene traits, antimicrobial susceptibility and genomic fingerprints. All 44 isolates were identified as O1 El Tor Ogawa, positive for various toxigenic and pathogenic genes viz. ace, ctxB, hlyA, ompU, ompW, rfbO1, rtx, tcpA, toxR and zot. Nucleotide sequencing revealed the presence of cholera toxin B of classical biotype in all the El Tor isolates, suggesting infection of isolates by classical CTXΦ. Antibiogram analysis showed a broad-spectrum antibiotic resistance that was also confirmed by the presence of resistant genes in the genomes. All isolates contained a class 1 integron and an SXT constin. However, isolates were sensitive to chloramphenicol and tested negative for the chloramphenicol resistant gene suggesting a deletion in SXT constin. Fingerprinting analysis of isolates by ERIC- and Box PCR revealed similar DNA patterns indicating the clonal dissemination of a single predominant V. cholerae O1 strain throughout the 2004 outbreak in Chennai.  相似文献   

17.
Several species of the genus Vibrio, including Vibrio cholerae, are bioluminescent or contain bioluminescent strains. Previous studies have reported that only 10% of V. cholerae strains are luminescent. Analysis of 224 isolates of non-O1/non-O139 V. cholerae collected from Chesapeake Bay, MD, revealed that 52% (116/224) were luminescent when an improved assay method was employed and 58% (130/224) of isolates harbored the luxA gene. In contrast, 334 non-O1/non-O139 V. cholerae strains isolated from two rural provinces in Bangladesh yielded only 21 (6.3%) luminescent and 35 (10.5%) luxA+ isolates. An additional 270 clinical and environmental isolates of V. cholerae serogroups O1 and O139 were tested, and none were luminescent or harbored luxA. These results indicate that bioluminescence may be a trait specific for non-O1/non-O139 V. cholerae strains that frequently occur in certain environments. Luminescence expression patterns of V. cholerae were also investigated, and isolates could be grouped based on expression level. Several strains with defective expression of the lux operon, including natural K variants, were identified.  相似文献   

18.
Vibrio cholerae is indigenous to the aquatic environment, and serotype non-O1 strains are readily isolated from coastal waters. However, in comparison with intensive studies of the O1 group, relatively little effort has been made to analyze the population structure and molecular evolution of non-O1 V. cholerae. In this study, high-resolution genomic DNA fingerprinting, amplified fragment length polymorphism (AFLP), was used to characterize the temporal and spatial genetic diversity of 67 V. cholerae strains isolated from Chesapeake Bay during April through July 1998, at four different sampling sites. Isolation of V. cholerae during the winter months (January through March) was unsuccessful, as observed in earlier studies (J. H. L. Kaper, R. R. Colwell, and S. W. Joseph, Appl. Environ. Microbiol. 37:91–103, 1979). AFLP fingerprints subjected to similarity analysis yielded a grouping of isolates into three large clusters, reflecting time of the year when the strains were isolated. April and May isolates were closely related, while July isolates were genetically diverse and did not cluster with the isolates obtained earlier in the year. The results suggest that the population structure of V. cholerae undergoes a shift in genotype that is linked to changes in environmental conditions. From January to July, the water temperature increased from 3°C to 27.5°C, bacterial direct counts increased nearly an order of magnitude, and the chlorophyll a concentration tripled (or even quadrupled at some sites). No correlation was observed between genetic similarity among isolates and geographical source of isolation, since isolates found at a single sampling site were genetically diverse and genetically identical isolates were found at several of the sampling sites. Thus, V. cholerae populations may be transported by surface currents throughout the entire Bay, or, more likely, similar environmental conditions may be selected for a specific genotype. The dynamic nature of the population structure of this bacterial species in Chesapeake Bay provides new insight into the ecology and molecular evolution of V. cholerae in the natural environment.  相似文献   

19.
This study investigated the occurrence of three types of vibrios in Southern California recreational beach waters during the peak marine bathing season in 2007. Over 160 water samples were concentrated and enriched for the detection of vibrios. Four sets of PCR primers, specific for Vibrio cholerae, V. parahaemolyticus, and V. vulnificus species and the V. parahaemolyticus toxin gene, respectively, were used for the amplification of bacterial genomic DNA. Of 66 samples from Doheny State Beach, CA, 40.1% were positive for V. cholerae and 27.3% were positive for V. parahaemolyticus, and 1 sample (1.5%) was positive for the V. parahaemolyticus toxin gene. Of the 96 samples from Avalon Harbor, CA, 18.7% were positive for V. cholerae, 69.8% were positive for V. parahaemolyticus, and 5.2% were positive for the V. parahaemolyticus toxin gene. The detection of the V. cholerae genetic marker was significantly more frequent at Doheny State Beach, while the detection of the V. parahaemolyticus genetic marker was significantly more frequent at Avalon Harbor. A probability-of-illness model for V. parahaemolyticus was applied to the data. The risk for bathers exposed to recreational waters at two beaches was evaluated through Monte Carlo simulation techniques. The results suggest that the microbial risk from vibrios during beach recreation was below the illness benchmark set by the U.S. EPA. However, the risk varied with location and the type of water recreation activities. Surfers and children were exposed to a higher risk of vibrio diseases. Microbial risk assessment can serve as a useful tool for the management of risk related to opportunistic marine pathogens.  相似文献   

20.
Non-O1/O139 Vibrio cholerae is naturally present in aquatic ecosystems and has been linked with cholera-like diarrhea and local outbreaks. The distribution of virulence-associated genes and genetic relationships among aquatic isolates from China are largely unknown. In this study, 295 aquatic isolates of V. cholerae non-O1/O139 serogroups from different regions in China were investigated. Only one isolate was positive for ctxB and harbored a rare genotype; 10 (3.4%) isolates carried several types of rstR sequences, eight of which carried rare types of toxin-coregulated pili (tcpA). Furthermore, 16 (5.4%) isolates carried incomplete (with partial open reading frames [ORFs]) vibrio seventh pandemic island I (VSP-I) or VSP-II clusters, which were further classified as 11 novel types. PCR-based analyses revealed remarkable variations in the distribution of putative virulence genes, including mshA (95.6%), hlyA (95.3%), rtxC (89.8%), rtxA (82.7%), IS1004 (52.9%), chxA (30.2%), SXT (15.3%), type III secretion system (18.0%), and NAG-ST (3.7%) genes. There was no correlation between the prevalence of putative virulence genes and that of CTX prophage or TCP genes, whereas there were correlations among the putative virulence genes. Further multilocus sequence typing (MLST) placed selected isolates (n = 70) into 69 unique sequence types (STs), which were different from those of the toxigenic O1 and O139 counterparts, and each isolate occupied a different position in the MLST tree. The V. cholerae non-O1/O139 aquatic isolates predominant in China have high genotypic diversity; these strains constitute a reservoir of potential virulence genes, which may contribute to evolution of pathogenic isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号