首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we examine the auditory capabilities of the sea otter (Enhydra lutris), an amphibious marine mammal that remains virtually unstudied with respect to its sensory biology. We trained an adult male sea otter to perform a psychophysical task in an acoustic chamber and at an underwater apparatus. Aerial and underwater audiograms were constructed from detection thresholds for narrowband signals measured in quiet conditions at frequencies from 0.125–40 kHz. Aerial hearing thresholds were also measured in the presence of octave-band masking noise centered at eight signal frequencies (0.25–22.6 kHz) so that critical ratios could be determined. The aerial audiogram of the sea otter resembled that of sea lions and showed a reduction in low-frequency sensitivity relative to terrestrial mustelids. Best sensitivity was ?1 dB re 20 µPa at 8 kHz. Under water, hearing sensitivity was significantly reduced when compared to sea lions and other pinniped species, demonstrating that sea otter hearing is primarily adapted to receive airborne sounds. Critical ratios were more than 10 dB higher than those measured for pinnipeds, suggesting that sea otters are less efficient than other marine carnivores at extracting acoustic signals from background noise, especially at frequencies below 2 kHz.  相似文献   

2.
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals’ vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.  相似文献   

3.
Pinnipeds forage almost exclusively underwater. Consequently, observing them is difficult and relatively little is known of how they use their senses to locate prey, avoid predators, and navigate while diving. Vision has been presumed to be of primary importance, although previous measurements of visual functioning in pinnipeds have been restricted to just a few shallow-diving species. As diving pinnipeds experience rapid changes in light levels during descent/ascent and low light levels at depth, it has not been clear whether they possess visual capabilities adequate for use while diving, particularly in the case of deep-diving species. To examine this issue, behavioral psychophysics have been used to assess and compare the dark adaptation rates and relative light sensitivities of a deep-diving pinniped (northern elephant seal, Mirounga angustirostris), two shallow-diving species (California sea lion, Zalophus californianus, and harbor seal, Phoca vitulina), and a human subject. In comparison to the human subject, both the California sea lion and the harbor seal dark-adapted relatively quickly and were more light sensitive. These findings suggest that both of these species are well suited for vision in the moderately dim shallow-water environments in which they dive to forage. In contrast, the elephant seal reached complete dark adaptation in less than half the time taken by the other pinnipeds, and it was significantly more light sensitive. Unlike the shallower-diving species, the visual abilities of the elephant seal are commensurate with the extreme conditions experienced while deep diving. Thus, we conclude that elephant seals are sufficiently adapted to rely on vision underwater, even while diving to depths in excess of 1000 meters where bioluminescence may be the sole source of ambient light.  相似文献   

4.
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.  相似文献   

5.
Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the host species representing the more recent host–parasite association. Intraspecific host-induced size differences are inconsistent with the exclusive use of morphometrics to delimit and diagnose species of Uncinaria from pinnipeds.  相似文献   

6.
The mystacial vibrissae of pinnipeds constitute a sensory system for active touch and detection of hydrodynamic events. Harbour seals (Phoca vitulina) and California sea lions (Zalophus californianus) can both detect hydrodynamic stimuli caused by a small sphere vibrating in the water (hydrodynamic dipole stimuli). Hydrodynamic trail following has only been shown in harbour seals. Hydrodynamical and biomechanical studies of single vibrissae of the two species showed that the specialized undulated structure of harbour seal vibrissae, as opposed to the smooth structure of sea lion vibrissae, suppresses self-generated noise in the actively moving animal. Here we tested whether also sea lions were able to perform hydrodynamic trail following in spite of their non-specialized hair structure. Hydrodynamic trails were generated by a remote-controlled miniature submarine. Linear trails could be followed with high accuracy, comparable to the performance of harbour seals, but in contrast, increasing delay resulted in a reduced performance as compared to harbour seals. The results of this study are consistent with the hypothesis that structural differences in the vibrissal hair types of otariid compared to phocid pinnipeds lead to different sensitivity of the vibrissae during forward swimming, but still reveal a good performance even in the species with non-specialized hair type.  相似文献   

7.
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500-600 Hz with a maximum of 300 μm s(-1) Pa(-1), approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300-500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20-30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.  相似文献   

8.
Carnivora includes three independent evolutionary transitions to the marine environment: pinnipeds (seals, sea lions, and walruses), sea otters, and polar bears. Among these, only the pinnipeds have retained two forms of insulation, an external fur layer and an internal blubber layer for keeping warm in water. In this study we investigated key factors associated with the transition to the use of blubber, by comparing blubber characteristics among the pinnipeds. Characteristics included gross morphology (blubber thickness), fat composition (fatty acid profiles, percentage lipid, and water), and thermal conductivity. Sea lions, phocids, and walrus, which have lower fur densities than fur seals, have thicker blubber layers than fur seals (P < 0.001). Comparisons of lipid content, water content, and fatty acid composition indicated significant differences in the composition of the inner and outer regions of the blubber between groups (P < 0.001), consistent with the hypothesis that phocids and sea lions utilize the outer layer of their blubber primarily for thermal insulation, and the inner layer for energy storage. Fur seals, by contrast, rely more on their fur for thermal insulation, and utilize their blubber layer primarily for energy storage. Comparing across carnivore species, differences in total insulation (fur and/or blubber) are influenced substantially by body size and habitat, and to a lesser extent by latitudinal climate. Overall, these results indicate consistent evolutionary trends in the transition to blubber and evidence for convergent evolution of thermal traits across lineages. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

9.
Lice are considered a model system for studying the process of cospeciation because they are obligate and permanent parasites and are often highly host‐specific. Among lice, species in the family Echinophthiriidae Enderlein (Anoplura) are unique in that they infest mammalian hosts with an amphibious lifestyle, i.e. pinnipeds and the river otter. There is evidence that the ancestor of this group infested the terrestrial ancestor of pinnipeds, which suggests these parasites coevolved with their hosts during the transition to marine environments. However, there has been no previous study investigating the phylogenetic relationships among sucking lice parasitizing seals and sea lions. To uncover the evolutionary history of these parasites, we obtained genomic data for Antarctophthirus microchir Trouessart and Neumann (from two hosts), Antarctophthirus carlinii Leonardi et al., Antarctophthirus lobodontis Enderlein, Antarctophthirus ogmorhini Enderlein, Lepidophthirus macrorhini Enderlein, and Proechinophthirus fluctus Ferris. From genomic sequence reads, we assembled > 1000 nuclear genes and used these data to infer a phylogenetic tree for these lice. We also used the assembled genes in combination with read‐mapping to estimate heterozygosity and effective population size from individual lice. Our analysis supports the monophyly of lice from pinnipeds and uncovers phylogenetic relationships within the group. Surprisingly, we found that A. carlinii, A. lobodontis, and A. ogmorhini have very little genetic divergence among them, whereas the divergence between different geographic representatives of A. microchir indicate that they are possibly different species. Nevertheless, our phylogeny of Echinophthiriidae suggests that these lice have consistently codiverged with their hosts with minimal host switching. Population genomic metrics indicate that louse effective population size is linked to host demographics, which further highlights the close association between pinnipeds and their lice.  相似文献   

10.
Accuracy of ARGOS Locations of Pinnipeds at-Sea Estimated Using Fastloc GPS   总被引:2,自引:0,他引:2  

Background

ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate.

Methodology/Principal Findings

We compared the accuracy of ARGOS locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions (Zalophus californianus), 4 Galapagos sea lions (Zalophus wollebaeki), 6 Cape fur seals (Arctocephalus pusillus pusillus), 3 Australian fur seals (A. p. doriferus) and 5 northern elephant seals (Mirounga angustirostris). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2–21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68th percentile ARGOS location errors as measured in this study were LC-3 0.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km.

Conclusions/Significance

The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data (S1) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.  相似文献   

11.
Bearded seals (Erignathus barbatus) are pan-Arctic pinnipeds that are often seen in association with pack ice, and are known for their long, loud trills, produced underwater primarily in the spring. Acoustic recordings were collected from August 2008 to August 2010 at two locations and a single year (2008–2009) at a third location, in the western Beaufort Sea. Three recorders in 2008–2009 had a 30 % duty cycle and a bandwidth of 10–4,096 Hz. One recorder in 2009–2010 had a 45 % duty cycle and a bandwidth of 10–4,096 Hz and the second had a 20 % duty cycle and bandwidth of 10–8,192 Hz. Spectrograms of acoustic data were examined for characteristic patterns of bearded seal vocalizations. For each recorder, the number of hours per day with vocalizations was compared with in situ water temperature and satellite-derived daily sea ice concentrations. At all sites, bearded seals were vocally active year-round. Call activity escalated with the formation of pack ice in the winter and the peak occurred in the spring, coinciding with mating season and preceding breakup of the sea ice. There was a change in the timing of seasonal sea ice formation and retreat between the two consecutive years that was reflected in the timing of peak bearded seal call activity. This study provides new information on fall and winter bearded seal vocal behavior and the relationship between year-round vocal activity and changes in annual sea ice coverage and in situ water temperature.  相似文献   

12.
Brucella infection in Hokkaido was serologically surveyed in four species of pinnipeds inhabiting Cape Erimo during 2008–2013 and the Shiretoko Peninsula in 1999 by ELISA using Brucella abortus and B. canis as antigens. Anti‐Brucella positive sera showed higher absorbance to B. abortus than B. canis in almost all samples. Anti‐B. abortus antibodies were detected in serum samples from 24% (n = 55) of Western Pacific harbor seals (Phoca vitulina stejnegeri) in Cape Erimo and from 66% (n = 41) of spotted seals (P. largha), 15% (n = 20) of ribbon seals (Histriophoca fasciata) and 18% (n = 17) of Western Steller's sea lions (Eumetopias jubatus jubatus) in the Shiretoko Peninsula. Anti‐Brucella antibodies were detected at higher absorbance in 1‐ to 4‐year‐old harbor seals than in the pups and mature animals, suggesting either that Brucella infection mainly occurs after weaning or that it is maternally transmitted to pups with premature or suppressed immunity. Anti‐Brucella antibodies were detected in both immature and mature spotted seals and ribbon seals, with higher absorbance in the former. The antibodies were detected only in mature Western Steller's sea lions. Western blot analysis of the serum samples showed some differences in band appearances, namely discrete versus smeary, and in the number of bands, indicating that multiple different Brucella may be prevalent in pinnipeds in Hokkaido. Alternatively, the Brucella of pinnipeds may have some intra‐species diversity.  相似文献   

13.
BOOK REVIEWS     
ABSTRACT

This paper provides our views on the areas of cetacean bioacoustics that are in the greatest need of study over the next several years. In doing this, we ask a number of questions we see as important to developing a better understanding of cetacean bioacoustics. The topics we will cover are: Auditory Capabilities, including hearing sensitivity, pathways of sound to the ear, intraspecific variation in hearing capabilities, and the effects of intense sound on hearing capabilities; Echolocation, including the information-bearing parameters exploited by dolphin sonar systems to discriminate and identify objects, and the functional characteristics of the internal representation generated by reflections from ensonified objects; and Acoustic Communication, including the nature of the cetacean sound generation mechanism, the behaviors associated with mysticete communication sounds, and the range over which mysticetes communicate. While other investigators may not fully agree with our suggestions as to which questions are most important for future studies of cetacean bioacoustics, it is clear that a considerable effort must still be made in order that we can better understand the bioacoustics and general behavior of these animals.  相似文献   

14.
Aerial and underwater audiograms for two young female northern fur seals ( Callorhinus ursinus ) and one young female California sea lion (Zalophus californianus) were obtained with the same procedure and apparatus. Callorhinus hears over a larger frequency range and is more sensitive to airborne sounds than Zalophus or any other pinniped thus far tested in the frequency range of 500 Hz to 32 kHz. Sensitivity of Callorhinus to waterborne pure tones, ranging from 2 to 28 kHz, is equal or superior to all other pinnipeds tested in this same frequency range. Like Zalophus , the upper frequency limit for underwater hearing (as defined by Masterton et al. 1969) in Callorhinus is about one-half octave lower than the three phocid species thus far tested. Callorhinus' upper frequency limit in air is about 36 kHz and under water it is about 40 kHz. Comparison of air and water audiograms shows Callorhinus is no exception to previous behavioral findings demonstrating that the „pinniped ear” is more suitable for hearing in water than in air. Similar to Zalophus and Phoca vitulina, Callorhinus shows an anomalous hearing loss at 4 kHz in air. The basis for this insensitivity to airborne sounds at 4kHz and not at lower or higher frequencies is presumably caused by specialized middle ear mechanisms matching impedance for waterborne sounds. Critical ratio curves for Callorhinus are similarly shaped to ones obtained for humans but are shifted upwards in frequency. Compared to all other marine mammals thus far evaluated, the critical ratios for Callorhinus are the smallest yet reported.  相似文献   

15.
ABSTRACT Pinnipeds are major consumers in marine ecosystems, and understanding their energy budgets is essential to determining their role in food webs, particularly where there is competition with fisheries. Food consumption and energy expenditure have been evaluated in pinnipeds using different methods, but the use of heart rate to estimate energy expenditure is potentially a very powerful tool suited to the life history of these animals. We tested a procedure for the subcutaneous implantation of heart rate data loggers to determine whether heart rate could be recorded for ≥1 year in free-ranging pinnipeds, as it has been in birds. We implanted 3 captive California sea lions (Zalophus californianus) and 3 captive northern elephant seals (Mirounga angustirostris) with heart rate data loggers and monitored their recovery and behavior in a controlled environment. In both species, the implantation site allowed for excellent detection of the electrocardiogram, and we observed heart rate signatures characteristic of behaviors such as resting and diving. Although all 3 sea lions recovered well from the implantation surgery, all 3 elephant seals showed a substantial inflammatory response for unknown reasons, and we removed the implanted data loggers. Subcutaneous implantation of data loggers is a powerful technique to study physiology, energetics, and behavior in California sea lions, but more work is required to realize the potential of this technique in northern elephant seals.  相似文献   

16.
Many marine vertebrates, including pinnipeds, turtles and birds, spend periods of time ashore during their life cycles. Quantification of time spent ashore is important for estimating population parameters such as abundance and productivity in some species, but can prove to be a difficult task. Here we describe a novel telemetry system based on Global Systems for Mobile Communications (GSM), to provide detailed information on the haul-out behaviour of tagged animals. We tested the system on harbour seals in southwest Ireland. The GSM telemetry system proved an effective means of obtaining information on the haul-out activity of harbour seals in the study area and of providing crude movement information that was less labour intensive than VHF telemetry and provides an alternative means of data acquisition offering some advantages over satellite telemetry. The GSM tag with its internal antennae is more robust than a satellite tag. The GSM networks allow more information to be relayed, so the “cost per bit of data” is reduced. Moreover, the large global investment in GSM networks have resulted in a telemetry technology with low running costs and therefore with significantly lower costs of data acquisition via GSM relative to Argos systems. With the ever-expanding global GSM network coverage the system has significant potential applications in behavioural studies of amphibious vertebrates, such as estimating clutch frequency in sea turtles.  相似文献   

17.
The oxygen consumption of three species of Malaysian mangrove gastropods was measured in air and sea water at the temperatures commonly recorded in the mangrove. The experiments in air were carried out after the animals had regained fluid lost from the mantle due to handling. Fluid loss can have considerable effects on rate of oxygen consumption. Nerita arliculata (Gould) was found throughout the mangrove and experiences from 50 to 92% aerial exposure. It has a gill and a ratio of aerial to aquatic respiration rates of 2.7 at 28°C. 50% of the animals can survive underwater for 72 h at 28°C. The other two species, Cerithidea obtusa (Lamarck) and Cassidula aurisfelis (Brugière) experience over 95% aerial exposure, have their mantle cavities modified as lungs and have air : water respiration rate ratios of 5.5 and 6.0, respectively. 50% can survive from 48 to 36 h underwater at 28°C. Acclimated animals have Q10's of about 1.6 in air and 1.4 in water. The respiratory physiology of the snails is compared with that of rocky shore species.  相似文献   

18.
Swimming modes are crucial for understanding evolutionary transitions from land to sea, because locomotion affects many aspects of an animal’s life. The modern pinniped families Otariidae (fur seals and sea lions), Phocidae (true seals), and Odobenidae (walruses) are thought to share a common origin, but each differs in its primary mode of aquatic locomotion. Previous studies of locomotor evolution in pinnipeds suggested: (1) forelimb swimming was ancestral; (2) hind limb swimming evolved once at the base of the clade including Phocidae, Odobenidae, and the extinct Desmatophocidae; and (3) reversal to forelimb swimming occurred in the odobenid subfamily Dusignathinae. The oldest and most basal pinnipedimorph Enaliarctos mealsi has been portrayed as a forelimb swimmer, and the desmatophocid Allodesmus kelloggi has been portrayed as a hind limb swimmer. These interpretations have been questioned by others and are tested here. Principal components analysis of trunk and limb measurements from 58 modern semiaquatic mammals demonstrates that Enaliarctos is most similar in skeletal proportions to hind limb-dominated swimmers, whereas Allodesmus is most similar to forelimb-dominated swimmers. Principal components and discriminant function analyses of trunk and limb measurements from 24 modern pinniped species demonstrate that Enaliarctos is most similar to hind limb-swimming phocids, while Allodesmus is most similar to forelimb-swimming otariids. These interpretations complicate previous portrayals of swimming evolution in pinnipeds and can paint a very different picture of how this behavior evolved when viewed in the context of alternative phylogenetic hypotheses.  相似文献   

19.
Aerial surveys of ice-associated pinnipeds were conducted south of St. Lawrence Island in March 2001. The observed distributions of bearded seals (Erignathus barbatus), ribbon seals (Phoca fasciata), ringed seals (P. hispida), spotted seals (P. largha), and walruses (Odobenus rosmarus) were compared to the distributions of ice habitat types and benthic communities. Randomization tests were used to investigate habitat selection for each species. Both ringed seals and walruses preferred large ice floes (>48 m in diameter) that were common in the interior ice pack. Spotted seals favored smaller ice floes (<20 m in diameter) common near the ice edge, and bearded seals avoided large floes and preferred transitional habitat between small and large floes. Ringed seals also seemed to prefer areas with greater than 90% sea ice coverage, and bearded seals preferred 70–90% sea ice coverage while avoiding areas with greater than 90% coverage. All species, except spotted seals, were seen most frequently in a region of high benthic biomass, and randomization tests suggested that bearded seals actively selected that region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号