首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two bacterial species (isolates N and O) were isolated from a paddy soil microcosm that had been artificially contaminated with diesel oil to which extrinsic Pseudomonas aeruginosa strain WatG, had been added exogenously. One bacterial species (isolate J) was isolated from a similar soil microcosm that had been biostimulated with Luria–Bertani (LB) medium. Isolates N and O, which were tentatively identified as Stenotrophomonas sp. and Ochromonas sp., respectively, by sequencing of their 16 S rRNA genes had no ability to degrade diesel oil on their own in any liquid medium. When each strain was cocultivated with P. aeruginosa strain WatG in liquid mineral salts medium (MSM) containing 1% diesel oil, isolate N enhanced the degradation of diesel oil by P. aeruginosa strain WatG, but isolate O inhibited it. In contrast, isolate J, which was tentatively identified as a Rhodococcus sp., degraded diesel oil contained not only in liquid LB and MSM, but also in paddy soil microcosms supplemented with LB medium. The bioaugmentation capacity of isolate J in soil microcosms contaminated with diesel oil was much higher than that of P. aeruginosa strain WatG. The possibility of using isolate J for autochthonous bioaugmentation is discussed.  相似文献   

2.
Boat lubricants are continuously released into the marine environment and thereby cause chronic oil pollution. This study aims to isolate lubricant-degrading microorganisms from Thai coastal areas as well as to apply a selected strain for removal of boat lubricants. Ten microorganisms in the genera of Gordonia, Microbacterium, Acinetobacter, Pseudomonas, Brucella, Enterococcus and Candida were initially isolated by crude oil enrichment culture techniques. The lubricant-removal activity of these isolates was investigated with mineral-based lubricants that had been manufactured for the 4-stroke diesel engines of fishing boats. Gordonia sp. JC11, the most effective strain was able to degrade 25-55% of 1,000 mg L(-1) total hydrocarbons in six tested lubricants, while only 0-15% of the lubricants was abiotically removed. The bacterium had many characteristics that promoted lubricant degradation such as hydrocarbon utilization ability, emulsification activity and cell surface hydrophobicity. For bioaugmentation treatment of lubricant contaminated seawater, the inoculum of Gordonia sp. JC11 was prepared by immobilizing the bacterium on polyurethane foam (PUF). PUF-immobilized Gordonia sp. JC11 was able to remove 42-56% of 100-1,000 mg L(-1) waste lubricant No. 2 within 5 days. This lubricant removal efficiency was higher than those of free cells and PUF without bacterial cells. The bioaugmentation treatment significantly increased the number of lubricant-degrading microorganisms in the fishery port seawater microcosm and resulted in rapid removal of waste lubricant No. 2.  相似文献   

3.
Degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG (WatG) was verified in soil microcosms. The total petroleum hydrocarbon (TPH) degradation level in two bioaugmentation samples was 51% and 46% for 1 week in unsterilized and sterilized soil microcosms, respectively. The TPH degradation in the biostimulation was of control level (15%). The TPH degradation in aeration-limited samples was clearly reduced when compared with that in aeration-unlimited ones under both sterilized and unsterilized conditions. Addition of WatG into soil microcosms was accompanied by dirhamnolipid production only in the presence of diesel oil. These findings suggest that degradation of n-alkanes in diesel oil in soil microcosms would be facilitated by bioaugmentation of WatG, with production of dirhamnolipid, and also by participation of biostimulated indigenous soil bacteria.  相似文献   

4.
Biodegradation of diesel oil (5 g(middot)kg [soil dry weight](sup-1)) was investigated in five alpine subsoils, differing in soil type and bedrock, in laboratory experiments during 20 days at 10(deg)C. The biodegradation activities of the indigenous soil microorganisms and of a psychrotrophic diesel oil-degrading inoculum and the effect of biostimulation by inorganic fertilization (C/N/P ratio = 100:10:2) were determined. Fertilization significantly enhanced diesel oil biodegradation activity of the indigenous soil microorganisms. Biostimulation by fertilization enhanced diesel oil biodegradation to a significantly greater degree than bioaugmentation with the psychrotrophic inoculum. In none of the five soils did fertilization plus inoculation result in a higher decontamination than fertilization alone. A total of 16 to 23% of the added diesel oil contamination was lost by abiotic processes. Total decontamination without and with fertilization was in the range of 16 to 31 and 27 to 53%, respectively.  相似文献   

5.
AIMS: To identify native Antarctic bacteria capable of oil degradation at low temperatures. METHODS AND RESULTS: Oil contaminated and pristine soils from Signy Island (South Orkney Islands, Antarctica) were examined for bacteria capable of oil degradation at low temperatures. Of the 300 isolates cultured, Pseudomonas strain ST41 grew on the widest range of hydrocarbons at 4 degrees C. ST41 was used in microcosm studies of low temperature bioremediation of oil-contaminated soils. Microcosm experiments showed that at 4 degrees C the levels of oil degradation increased, relative to the controls, with (i) the addition of ST41 to the existing soil microbial population (bioaugmentation), (ii) the addition of nutrients (biostimulation) and to the greatest extent with (iii) a combination of both treatments (bioaugmentation and biostimulation). Addition of water to oil contaminated soil (hydration) also enhanced oil degradation, although less than the other treatments. Analysis of the dominant species in the microcosms after 12 weeks, using temporal temperature gradient gel electrophoresis, showed Pseudomonas species to be the dominant soil bacteria in both bioaugmented and biostimulated microcosms. CONCLUSIONS: Addition of water and nutrients may enhance oil degradation through the biostimulation of indigenous oil-degrading microbial populations within the soil. However, bioaugmentation with Antarctic bacteria capable of efficient low temperature hydrocarbon degradation may enhance the rate of bioremediation if applied soon after the spill. SIGNIFICANCE AND IMPACT OF THE STUDY: In the future, native soil bacteria could be of use in bioremediation technologies in Antarctica.  相似文献   

6.
Methylammonium consumption and ribulose 1-5-bisphosphate carboxylase (RuBisCO) activity were monitored in cultures of wild type Thiobacillus versutus and mutants deficient in autotrophic metabolism grown under various growth conditions. Only mutants 22, 72, 73 (deficient in ability to oxidize thiosulphate) could grow and develop RuBisCO activity on methylammonium, and assimilate 14CO2 generated as a result of methylammonium metabolism. Mutants 40 and 76, deficient in autotrophic CO2 fixation, showed no 14C methylammonium assimilation and did not oxidize it as a sole substrate within normal incubation periods. Relations of substrate metabolism and RuBisCO regulation in cultures grown on mixtures of thiosulphate or sucrose and methylammonium are described. Further genetic analysis of mutants with defects in autotrophic metabolism may allow localisation of genes responsible for the metabolic effects described.  相似文献   

7.
The focus of this study was to investigate the effect of nutrient supplement (urea fertilizer) and microbial species augmentation (mixed culture of Aeromonas, Micrococcus, and Serratia sp.) on biodegradation of lubricating motor oil (LMO) and lead uptake by the autochthonous microorganism in LMO and lead-impacted soil were investigated. The potential inhibitory effects of lead on hydrocarbon utilization were investigated over a wide range of lead concentrations (25–200 mg/kg) owing to the complex co-contamination problem frequently encountered in most sites. Under aerobic conditions, total petroleum hydrocarbons (TPH) removal was 45.3% in the natural attenuation microcosm while a maximum of 72% and 68.2% TPH removal was obtained in biostimulation and bioaugmentation microcosms, respectively. Lead addition, as lead nitrate, to soil samples reduced the number of hydrocarbon degraders in all samples by a wide range (11–52%) depending on concentration and similarly, the metabolic activities were affected as observed in mineralization of LMO (3–60%) in soils amended with various lead concentrations. Moreover, the uptake of lead by the autochthonous microorganisms in the soil reduced with increase in the initial lead concentration. First-order kinetics described the biodegradation of LMO very well. The biodegradation rate constants were 0.015, 0.033, and 0.030 day?1 for LMO degradation in natural attenuation, biostimulation and bioaugmentation treatment microcosms, respectively. The presence of varying initial lead concentration reduced the biodegradation rate constant of LMO degradation in the biostimulation treatment microcosm. Half-life times were 46.2, 21, and 23 days for LMO degradation in natural attenuation, biostimulation and bioaugmentation treatment microcosms, respectively. The half-life time in the biostimulation treatment microcosm was increased with a range between 10.7 and 39.2 days by the presence of different initial lead concentration. The results have promising potential for effective remediation of soils co-contaminated with hydrocarbons and heavy metals.  相似文献   

8.
Most heterotrophic bacteria assimilate CO(2) in various carboxylation reactions during biosynthesis. In this study, assimilation of (14)CO(2) by heterotrophic bacteria was used for isotope labeling of active microorganisms in pure cultures and environmental samples. Labeled cells were visualized by microautoradiography (MAR) combined with fluorescence in situ hybridization (FISH) to obtain simultaneous information about activity and identity. Cultures of Escherichia coli and Pseudomonas putida assimilated sufficient (14)CO(2) during growth on various organic substrates to obtain positive MAR signals. The MAR signals were comparable with the traditional MAR approach based on uptake of (14)C-labeled organic substrates. Experiments with E. coli showed that (14)CO(2) was assimilated during both fermentation and aerobic and anaerobic respiration. The new MAR approach, HetCO(2)-MAR, was evaluated by targeting metabolic active filamentous bacteria, including "Candidatus Microthrix parvicella" in activated sludge. "Ca. Microthrix parvicella" was able to take up oleic acid under anaerobic conditions, as shown by the traditional MAR approach with [(14)C]oleic acid. However, the new HetCO(2)-MAR approach indicated that "Ca. Microthrix parvicella," did not significantly grow on oleic acid under anaerobic conditions with or without addition of NO(2)(-), whereas the addition of O(2) or NO(3)(-) initiated growth, as indicated by detectable (14)CO(2) assimilation. This is a metabolic feature that has not been described previously for filamentous bacteria. Such information could not have been derived by using the traditional MAR procedure, whereas the new HetCO(2)-MAR approach differentiates better between substrate uptake and substrate metabolism that result in growth. The HetCO(2)-MAR results were supported by stable isotope analysis of (13)C-labeled phospholipid fatty acids from activated sludge incubated under aerobic and anaerobic conditions in the presence of (13)CO(2). In conclusion, the novel HetCO(2)-MAR approach expands the possibility for studies of the ecophysiology of uncultivated microorganisms.  相似文献   

9.
Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.  相似文献   

10.
Ferrobacillus ferrooxidans, grown on either elemental sulfur or ferrous sulfate, was able to use either substrate as an energy source for the assimilation of CO(2). In both cases, 0.01 mumole of carbon was incorporated per mumole of oxygen utilized. Glucose inhibited substrate oxidation and CO(2) fixation. Sulfur and iron oxidation were inhibited 5 to 15% and 40 to 50%, respectively, in the presence of 10% glucose. Under the same conditions, CO(2) assimilation was inhibited 50% with elemental sulfur as the energy source, and was almost totally inhibited when ferrous iron was used.  相似文献   

11.
Research was conducted to estimate impact of the multiple bioaugmentation on the treatment of soil contaminated by fuels - diesel oil and aircraft fuel. The bacteria used to inoculate the remediation plots were isolated from the polluted soil and proliferated in field conditions. The amount of biomass applied to the polluted soil was set to ensure the total number of bacteria in soil 107-108 cfu/g d.w. The multiple inoculation of soil with indigenous bacteria active in diesel oil and engine oil (plot A) degradation increased bioremediation effectiveness by 50% in comparison to the non-inoculated control soil and by 30% in comparison to the soil that was inoculated only once. The multiple inoculation of soil with indigenous microorganisms was then applied in bioremediation of the soil polluted with double high concentration of diesel oil (soil B) and in bioremediation of the soil polluted with aircraft fuel (soil C). The process efficiency was 80% and 98% removal of TPH for soil B and C, respectively.  相似文献   

12.
Leaks and spillages during the extraction, transport and storage of petroleum and its derivatives may result in environmental contamination. Biodiesel is an alternative energy source that can contribute to a reduction in environmental pollution. The aim of the present work was to evaluate biodegradation of diesel, biodiesel, and a 20% biodiesel-diesel mixture in oxisols from southern Brazil, using two bioremediation strategies: natural attenuation and bioaugmentation/biostimulation. Fuel biodegradation was monitored over 60 days by dehydrogenase activity, CO2 evolution and gas chromatography. The bacterial inoculum employed for bioaugmentation/biostimulation consisted of Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia and PCR-DGGE using 16S RNAr primers showed that some members of this consortium survived in the soil after 60 days. The biodegradation of pure biodiesel was higher for bioaugmentation/biostimulation than for natural attenuation, suggesting that the addition of the microbial consortium, together with adjustment of the macronutrient ratio, increased biodiesel degradation. The results of dehydrogenase and respiratory activity, together with GC analysis, suggested that the presence of biodiesel may, by stimulating general microbial degradative metabolism, increase the biodegradation of petroleum diesel. The microbial community was altered by both treatments, with natural attenuation producing a lower diversity index than the amended soil. The bioaugmentation/biostimulation strategy was showed to have a high potential for cleaning up soils contaminated with diesel and biodiesel blends.  相似文献   

13.
Bioremediation is an important technology for the removal of persistent organic pollutants from the environment. Bioaugmentation with the encapsulated Pseudomonas sp. strain MHP41 of agricultural soils contaminated with the herbicide simazine was studied. The experiments were performed in microcosm trials using two soils: soil that had never been previously exposed to s -triazines (NS) and soil that had >20 years of s -triazine application (AS). The efficiency of the bioremediation process was assessed by monitoring simazine removal by HPLC. The simazine-degrading microbiota was estimated using an indicator for respiration combined with most-probable-number enumeration. The soil bacterial community structures and the effect of bioaugmentation on these communities were determined using 16S RNA gene clone libraries and FISH analysis. Bioaugmentation with MHP41 cells enhanced simazine degradation and increased the number of simazine-degrading microorganisms in the two soils. In highly contaminated NS soil, bioaugmentation with strain MHP41 was essential for simazine removal. Comparative analysis of 16S rRNA gene clone libraries from NS and AS soils revealed high bacterial diversity. Bioaugmentation with strain MHP41 promoted soil bacterial community shifts. FISH analysis revealed that bioaugmentation increased the relative abundances of two phylogenetic groups ( Acidobacteria and Planctomycetes ) in both soils. Although members of the Archaea were metabolically active in these soils, their relative abundance was not altered by bioaugmentation.  相似文献   

14.
The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.  相似文献   

15.
Microorganisms with high oil-degrading performance are essential for bioremediation of soil contaminated with crude oil. A positive end dilution method was employed for the selection of crude oil-degrading functional consortium from contaminated soil. The selected consortium was consisted of Rhizobiales sp., Pseudomonas sp., Brucella sp., Bacillus sp., Rhodococcus sp., Microbacterium sp. and Roseomonas sp. and removed nearly 52.1% of crude oil at initial concentration of 10,000 mg l−1 at 30 °C within 7 days, with removal of aliphatic hydrocarbons by 71.4% and aromatic hydrocarbons by 36.0%, respectively. The effectiveness of the consortium for bioaugmentation was confirmed with microcosm test by contaminated soil (1.0 kg) from Karemary Oilfield, China. The removal efficiency of crude oil was enhanced to >50% in microcosms with the consortium compared with 8-13% or lower in controls over a 60 day period. The crude oil removal reaction was probably first order reaction and the rate was greatly enhanced by bioaugmentation. Supplementation of nitrogen and phosphate sources had limited effect on the oil removal in the tested soil.  相似文献   

16.
Sustainability of algae derived biodiesel: a mass balance approach   总被引:1,自引:0,他引:1  
A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term.  相似文献   

17.
Cottonseed oil has been used as a fuel source either as a blend with diesel in varying proportions or undiluted (100%) in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-fueled burner similar to those used by cottonseed oil mills and cotton gins in their drying operations. The purpose of this study was to evaluate emissions from five fuel oil treatments while firing a multi-fueled burner in a setup similar to those used for drying operations of both cottonseed oil mills and cotton gins. For each treatment, gaseous emissions were measured while firing the burner at three fuel flow rates. The five fuel oil treatments evaluated were: (1) No. 2 diesel at 28.3 degrees C, (2) prime bleachable summer yellow (PBSY) cottonseed oil at 28.3 degrees C (PBSY-28), (3) crude cottonseed oil at 28.3 degrees C (Crude-28), (4) PBSY at 60 degrees C (PBSY-60), and (5) crude at 60 degrees C (Crude-60). Results indicate that PBSY treatments had the lowest overall emissions of all treatments. The other treatments varied in emission rates based on treatment and fuel flow rate. Preheating the oil to 60 degrees C resulted in higher NO(x) emissions but displayed varying results in regards to CO. The CO emissions for the crude treatments were relatively unaffected by the 60 degrees C preheat temperature whereas the preheated PBSY treatments demonstrated lower CO emissions. Overall, both cottonseed oils performed well in the multi-fueled burner and displayed a promising potential as an alternative fuel source for cottonseed oil mills and cotton gins in their drying operations.  相似文献   

18.
This study investigates various factors affecting bioremoval of copper from experimentally contaminated soil by bioaugmentation with a metal-resistant microorganism (B1) accompanied with amendment of an organic matter (mustard oil cake). The initial contamination level reduced by 67% with this joint strategy compared to 13% by application of bioaugmentation. Increasing organic amendment concentration beyond 6 wt% did not significantly improve microbial growth and the extent of bioremediation due to increase of pH. The bioaccessible copper concentration, however, did not change significantly. Controlling pH by one-time application of ferrous sulfate (1 wt%) into the experimental run resulted in enhanced microbial growth. The copper concentration in soil and bioaccessible copper concentration reduced to 55% and 80% of the value obtained without pH control for the same period of incubation. This study suggests the potential of co-application of isolated metal-resistant bacteria (B1) and mustard oil cake amendment in conjunction with pH control for in situ bioremediation of copper-contaminated soil.  相似文献   

19.
AIMS: The aim of the present study was to isolate and characterize a bacterium, strain EN3, capable of using diesel oil as a major carbon and energy source, and to analyse the enhancement of diesel oil degradation by this organism using synthetic mycolic acid (2-hexyl-3-hydroxyldecanoic acid). METHOD AND RESULTS: An actinomycete with the ability to degrade diesel oil was isolated from oil contaminated soil and characterized. The strain had phenotypic properties consistent with its classification in the genus Rhodococcus showing a 16S rRNA gene similarity of 99.7% with Rhodococcus baikonurensis DSM 44587(T). The ability of the characterized strain to degrade diesel oil at various concentrations (1000, 5000, 10 000 and 20 000 mg l(-1)) was determined. The effect of synthetic mycolic acid on the biodegradation of diesel oil was investigated at the 20 000 mg l(-1) concentration; the surfactant was added to the flask cultures at three different concentrations (10, 50 and 100 mg l(-1)) and degradation followed over 7 days. Enhanced degradation was found at all three concentrations of the surfactant. In addition, the enhancement of diesel oil degradation by other surfactants was observed. CONCLUSIONS: The synthetic mycolic acid has potential for the remediation of petroleum-contaminated sites from both an economic and applied perspective as it can stimulate biodegradation at low concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that the synthesized mycolic acid can be used for potential applications in the bioremediation industries, for example, in oil spill clean-up, diesel fuel remediation and biostimulation.  相似文献   

20.
The purified extracellular emulsifying factor produced by Arthrobacter RAG-1 (EF-RAG) emulsified light petroleum oil, diesel oil, and a variety of crude oils and gas oils. Although kerosine and gasoline were emulsified poorly by EF-RAG, they were converted into good substrates for emulsification by addition of aromatic compounds, such as 2-methylnaphthalene. Neither aromatic nor aliphatic fractions of crude oil were emulsified by EF-RAG; however, mixtures containing both fractions were emulsified. Pure aliphatic or aromatic hydrocarbons were emulsified poorly by EF-RAG. Binary mixtures containing an aliphatic and an aromatic hydrocarbon, however, were excellent substrates for EF-RAG-induced emulsification. Of a variety of alkylcyclohexane and alkylbenzene derivatives tested, only hexyl- or heptylbenzene and octyl- or decylcyclohexane were effectively emulsified by EF-RAG. These data indicate that for EF-RAG to induce emulsification of hydrocarbons in water, the hydrocarbon substrate must contain both aliphatic and cyclic components. With binary mixtures of methylnaphthalene and hexadecane, maximum emulsion was obtained with 25% hexadecane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号