首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The hormone regulatory element (HRE) of mouse mammary tumor virus can mediate activation of an adjacent promoter by glucocorticoids and progestins. A detailed comparison of the DNA binding of receptors for both hormones using DNAase I footprinting and methylation protection detects clear differences in their interactions with the HRE region between positions -130 and -100. Binding studies and gene transfer experiments with a variety of mutants covering the entire HRE demonstrate differences in the relevance of the individual sequence motifs for induction by each hormone. The influence of changes in the angular orientation of receptor binding sites is also different for glucocorticoid and progesterone induction. In transfection experiments with mutated HREs, we find a functional cooperation between the receptor binding sites that does not correlate with variations in the in vitro affinity of the receptors for the corresponding DNA fragment.  相似文献   

3.
4.
5.
Gene regulation by steroid hormones   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
8.
9.
10.
Glucocorticoids act in part via glucocortocoid receptor binding to hormone response elements (HREs), but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids.  相似文献   

11.
Steroid hormone receptors can be divided into two subfamilies according to the structure of their DNA binding domains and the nucleotide sequences which they recognize. The glucocorticoid receptor and the progesterone receptor (PR) recognize an imperfect palindrome (glucocorticoid responsive element/progesterone responsive element [GRE/PRE]) with the conserved half-sequence TGTYCY, whereas the estrogen receptor (ER) recognizes a palindrome (estrogen responsive element) with the half-sequence TGACC. A series of symmetric and asymmetric variants of these hormone responsive elements (HREs) have been tested for receptor binding and for the ability to mediate induction in vivo. High-resolution analysis demonstrates that the overall number and distribution of contacts with the N-7 position of guanines and with the phosphate backbone of various HREs are quite similar for PR and ER. However, PR and glucocorticoid receptor, but not ER, are able to contact the 5'-methyl group of thymines found in position 3 of HREs, as shown by potassium permanganate interference. The ER mutant HE84, which contains a single amino acid exchange, Glu-203 to Gly, in the knuckle of ER, creates a promiscuous ER that is able to bind to GRE/PREs by contacting this thymine. Elements with the sequence GGTCAcagTGTYCT that represent hybrids between an estrogen response element and a GRE/PRE respond to estrogens, glucocorticoids, and progestins in vivo and bind all three wild-type receptors in vitro. These hybrid HREs could serve to confer promiscuous gene regulation.  相似文献   

12.
13.
14.
15.
16.
The DNA binding domain (DBD) of nuclear hormone receptors contains a highly conserved globular domain and a less conserved carboxyl-terminal extension (CTE). Despite previous observations that the CTEs of some classes of nuclear receptors are structured and interact with DNA outside of the hexanucleotide hormone response element (HRE), there has been no evidence for such a CTE among the steroid receptors. We have determined the structure of the progesterone receptor (PR)-DBD-CTE DNA complex at a resolution of 2.5 A, which revealed binding of the CTE to the minor groove flanking the HREs. Alanine substitutions of the interacting CTE residues reduced affinity for inverted repeat HREs separated by three nucleotides, and essentially abrogated binding to a single HRE. A highly compressed minor groove of the trinucleotide spacer and a novel dimerization interface were also observed. A PR binding site selection experiment revealed sequence preferences in the trinucleotide spacer and flanking DNA. These results, taken together, support the notion that sequences outside of the HREs influence the DNA binding affinity and specificity of steroid receptors.  相似文献   

17.
18.
19.
Gene regulation by steroids is tightly coupled to hormone concentration and stereochemistry. A key step is binding of hormones to receptors which interact with consensus DNA sequences known as hormone response elements (HREs). The specificity and strength of hormone binding do not correlate well with hormonal activity suggesting an additional step involving recognition of ligand by the gene. Stereospecific fit of hormones between base pairs and correlation of fit with hormonal activity led to the proposal that such recognition involves insertion of hormone into DNA. Here, the feasibility of insertion was investigated using computer models of the glucocorticoid receptor DNA binding domain bound to its HRE. The site reported to accommodate glucocorticoids was found in the HRE and was exposed to permit unwinding at this locus. The resulting cavity in the unwound DNA/receptor interface fit cortisol remarkably well; cortisol formed hydrogen bonds to both the receptor and DNA. Current experimental evidence is generally consistent with ligand binding domains of receptors undergoing a conformational change which facilitates transfer of the ligand into the unwound DNA/receptor interface. We propose this step is rate limiting and alterations in receptor, DNA or hormone which attenuate insertion impair hormonal regulation of gene function.  相似文献   

20.
Determinants of target gene specificity for steroid/thyroid hormone receptors   总被引:84,自引:0,他引:84  
K Umesono  R M Evans 《Cell》1989,57(7):1139-1146
The molecular specificity of the receptors for steroid and thyroid hormones is achieved by their selective interaction with DNA binding sites referred to as hormone response elements (HREs). HREs can differ in primary nucleotide sequence as well as in the spacing of their dyadic half-sites. The target gene specificity of the glucocorticoid receptor can be converted to that of the estrogen receptor by changing three amino acids clustered in the first zinc finger. Remarkably, a single Gly to Glu change in this region produces a receptor that recognizes both glucocorticoid and estrogen response elements. Further replacement of five amino acids in the stem of the second zinc finger transforms the specificity to that of the thyroid hormone receptor. These findings localize structural determinants required for discrimination of HRE sequence and half-site spacing, respectively, and suggest a simple pathway for the coevolution of receptor DNA binding domains and hormone-responsive gene networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号