首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stoichiometry of the individual steps, i.e. polypeptide chain cleavage, hydrolysis of the putative thioester bond and conformational change, of the reaction between alpha 2-macroglobulin and trypsin or chymotrypsin was analysed. The chain cleavage was monitored by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the thioester hydrolysis by both a spectroscopic and a fluorimetric technique and the conformational change by tryptophan fluorescence. A stoichiometry of close to 2:1 was obtained for all reactions. This finding indicates that the alpha 2-macroglobulin half-molecule is an independent functional unit of the inhibitor, within which co-operativity between the two subunits may occur.  相似文献   

2.
Although it is known that most of the plasma proteinase inhibitors form complexes with proteinases that are not dissociated by SDS (sodium dodecyl sulphate), there has been disagreement as to whether this is true for alpha 2M (alpha 2-macroglobulin). We have examined the stability to SDS with reduction of complexes between alpha 2M and several 125I-labelled proteinases (trypsin, plasmin, leucocyte elastase, pancreatic elastase and papain) by gel electrophoresis. For each enzyme, some molecules were separated from the denatured alpha 2M chains, but amounts ranging from 8.3% (papain) to 61.2% (trypsin) were bound with a stability indicative of a covalent link. Proteolytic activity was essential for the covalent binding to occur, and the proteinase molecules became attached to the larger of the two proteolytic derivatives (apparent mol.wt. 111 000) of the alpha 2M subunit. We take this to mean that cleavage of the proteinase-susceptible site sometimes leads to covalent-bond formation between alpha 2M and proteinase. Whatever the nature of this bond, it does not involve the active site of the proteinase, as bound serine-proteinase molecules retain the ability to react with the active-site-directed reagent [3H]Dip-F (di-isopropyl phosphorofluoridate). Our conclusion is that the ability to form covalent links is not essential for the inhibitory capacity of alpha 2M. It may, however, help to stabilize the complexes against dissociation or proteolysis.  相似文献   

3.
The interaction alpha 2-macroglobulin with four proteinases has been investigated by binding assays and by gel electrophoresis. At pH 7.65 the binding ratios of the proteinase-alpha 2-macroglobulin complexes were found to be 2:1 (trypsin and papain), 1.4:1 (chymotrypsin), and 1:1 (plasmin). The progressive decrease in the stoichiometry of the three seryl proteinase complexes was paralleled by a concomitant decrease in the proteinase-dependent specific cleavage of the alpha 2-macroglobulin peptide chains. Rate studies have shown that the relative rates of reaction of the proteinases with alpha 2-macroglobulin also varied greatly: papain greater than trypsin greater than chymotrypsin greater than plasmin. The data suggest that the ability of a proteinase to saturate the second proteinase binding site is a reflection of its ability to bind to alpha 2-macroglobulin and cleave the second pair of scissile alpha 2-macroglobulin peptide bonds before the alpha 2-macroglobulin has undergone the conformational change initiated by the formation of the 1:1 proteinase alpha 2-macroglobulin complex.  相似文献   

4.
Analysis of plasmin-alpha 2-macroglobulin interactions by polyacrylamide gel electrophoresis showed that both the light and heavy chains of the proteinase have covalent links with the inhibitor. This covalent binding occurs with a 95 +/- 5% yield and can be abolished in the presence of hydroxylamine without modification of the plasmin-alpha 2-macroglobulin stoichiometry, the extent of the 180-kDa peptide chain cleavage and the generation of the -SH groups. However, these two different binding modes greatly influence the enzymatic properties of the proteinase as well as the occupancy by an other proteinase molecule of the free binding site of the (1:1) plasmin-alpha 2-macroglobulin complex. Non-covalently bound plasmin is more active on synthetic substrates and interacts more tightly with the basic pancreatic trypsin inhibitor than the covalently bound enzyme. Furthermore, the former complex incorporates significantly more chymotrypsin than the latter. The incorporation of chymotrypsin influences the catalytic properties of plasmin within the ternary complex.  相似文献   

5.
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.  相似文献   

6.
7.
alpha(2)-Macroglobulin (alpha(2)M) is a highly conserved proteinase inhibitor present in human plasma at high concentration (2-4 mg/ml). alpha(2)M exists in two conformations, a native form and an activated, receptor-recognized form. While alpha(2)M binds to numerous cytokines and growth factors, in most cases, the nature of the alpha(2)M interaction with these factors is poorly understood. We examined in detail the interaction between alpha(2)M and vascular endothelial growth factor (VEGF) and found a novel and unexpected mechanism of interaction as demonstrated by the following observations: 1) the binding of VEGF to alpha(2)M occurs at a site distinct from the recently characterized growth factor binding site; 2) VEGF binds different forms of alpha(2)M with distinct spatial arrangement, namely to the interior of methylamine or ammonia-treated alpha(2)M and to the exterior of native and proteinase-converted alpha(2)M; and 3) VEGF (molecular mass approximately 40 kDa) can access the interior of receptor-recognized alpha(2)M in the absence of a proteinase trapped within the molecule. VEGF bound to receptor-recognized forms of alpha(2)M is internalized and degraded by macrophages via the alpha(2)M receptor, the low density lipoprotein receptor-related protein. Oxidation of both native and receptor-recognized alpha(2)M results in significant inhibition of VEGF binding. We also examined the biological significance of this interaction by studying the effect of alpha(2)M on VEGF-induced cell proliferation and VEGF-induced up-regulation of intracellular Ca(2+) levels. We demonstrate that under physiological conditions, alpha(2)M does not impact the ability of VEGF to induce cell proliferation or up-regulate Ca(2+).  相似文献   

8.
SDS-polyacrylamide gel electrophoresis of a recently prepared alpha 2-macroglobulin solution showed only the polypeptide chains of 190,000 molecular weight. Reduction-alkylation of this preparation followed by gel-filtration on a Sephadex G-200 column in 5.2 M guanidine hydrochloride was unable to separate a fraction of 83,000 molecular weight as previously described. Nevertheless, after incubation of a mixture alpha 2-macroglobulin-trypsin during 45 minutes at 37 degrees C, approximately 60 per cent of the preparation were converted in a component with 83,000 molecular weight as detected in SDS polyacrylamide gel. That component was isolated on Sephadex G-200 in guanidine hydrochloride and corresponds to the subunit, fraction II. According to the results of the present work together with those of previous studies, it can be assumed that alpha 2-MG is a 780,000 molecular weight protein (19S) formed of two half-molecules of equal weight (11-12S). The half-molecule contains two polypeptide chains of 180,000-190,000 molecular weight, each of them having, in its middle, a specific region particularly susceptible to attack by proteases.  相似文献   

9.
10.
From electron micrographs single molecules of alpha 2-macroglobulin in the "closed" form, the "open" form and as the trypsin complex have been computer averaged. The molecular images are discussed. Molecules of the electrophoretically fast migrating "F-form" have the "closed" form. In the case of the alpha 2-macroglobulin/trypsin complex the two attached trypsin molecules are located very near to each other and in the central part of the alpha 2-macroglobulin molecule.  相似文献   

11.
Subcellular membrane and granule fractions derived from human platelets contain immunologically identifiable alpha2-macroglobulin and alpha1-antitrypsin. These platelet-derived inhibitors show a reaction of immunologic identity when compared to alpha2-macroglobulin and alpha1-antitrypsin purified from human plasma. Further, the platelet protease inhibitors possessed a similar subunit polypeptide chain structure to their plasma counterparts as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis. Studies of the binding of radiolabeled trypsin to the various solubilized platelet subcellular fractions suggest that the granule-associated alpha2-macroglobulin and alpha1-antitrypsin, as well as membrane-associated alpha2-macroglobulin were functionally active. Quantitatively, circulating platelets contain relatively small concentrations of these inhibitors as compared to platelet-associated fibrinogen and factor VIIIAGN. Platelet protease inhibitors may modulate the protease-mediated events involved in the formation of hemostatic plugs and thrombi.  相似文献   

12.
13.
A papain-binding protein (PBP) resembling human alpha 2-macroglobulin (alpha 2M) but of Mr half that of alpha 2M was purified from plaice (Pleuronectes platessa L.) plasma. The plaice protein displayed most of the distinctive inhibitory properties of the human macroglobulin, and was therefore considered, despite its smaller molecular size, to be homologous with alpha 2M. Plaice PBP was shown to consist of four dissimilar subunits; two I chains (Mr 105 000) and two II chains (Mr 90 000). Each of the larger I chains contained a "bait region" sensitive to proteolytic attack by a variety of proteinases, and an autolytic site analogous to the autolytic site of alpha 2M. Subunit I, almost certainly at the autolytic site, formed SDS-stable, covalent links with methylamine or a proportion of the trapped proteinase molecules. A scheme is proposed for the evolution of human alpha 2M from the smaller fish protein, and the possibility of a shared evolutionary origin for alpha 2M and the complement components C3 and C4 is discussed.  相似文献   

14.
Blood serum separation by the method of gel filtration on Sephadex G-200 with the subsequent immunochemical determination of the quantitative content of basic proteolysis inhibitors permitted isolating the alpha 2-macroglobulin fraction while alpha 1-antitrypsin and alpha 1-antichymotrypsin separation was a failure. The immunochemical analysis of the antienzymic activity of the isolated inhibitors showed that 32.3 +/- 3.5% of the introduced kallikrein, 18.7 +/- 0.6% of trypsin and 14.4 +/- 4.1% of chymotrypsin were bound in the zone of alpha 2-macroglobulin. The rest of antienzymic activity was localized in the zone of alpha 1-antitrypsin and alpha 1-antichymotrypsin. After a preliminary saturation of blood serum with trypsin in the amount equivalent to its antitryptic capacity (200 micrograms/ml) the ability of alpha 2-macroglobulin to bind kallikrein and chymotrypsin lowers considerably (by 69 and 72%, respectively). In the zone of alpha 1-antitrypsin and alpha 1-antichymotrypsin a decrease in the ability to bind kallikrein and chymotrypsin amounted to 44 and 12% respectively. Thus, alpha 2-macroglobulin being bound with trypsin looses considerably its ability to bind other enzymes.  相似文献   

15.
Interaction of human plasmin with human alpha 2-macroglobulin   总被引:2,自引:0,他引:2  
The steady-state kinetic parameters of plasmin and the alpha 2-macroglobulin (alpha 2M)-plasmin complex toward the chromogenic substrate Val-Leu-Lys-p-nitroanilide (S-2251), in the presence and absence of plasmin competitive inhibitors, have been determined. At pH 7.4 and 22 degrees C, the Km values for plasmin and alpha 2M-plasmin for S-2251 were 0.13 +/- 0.02 mM and 0.3 +/- 0.03 mM. The kcat of this reaction, when catalyzed by alpha 2M-plasmin, was 6.0 +/- 0.5 s-1, a value significantly decreased from the kcat of 11.0 +/- 1.0 s-1, determined when free plasmin was the enzyme. KI values for benzamidine of 0.50 +/- 0.05 mM and 0.23 +/- 0.02 mM were obtained for S-2251 hydrolysis, as catalyzed by alpha 2M-plasmin and plasmin, respectively. When leupeptin was the competitive inhibitor, KI values of 5.0 +/- 0.65 microM and 1.0 +/- 0.1 microM were obtained when alpha 2M-plasmin and plasmin, respectively, were the enzymes employed for catalysis of S-2251 hydrolysis. The comparative rates of reaction of the peptide inhibitor Trasylol (Kunitz basic pancreatic inhibitor) with plasmin and alpha 2M-plasmin were also determined. A concentration of Trasylol of at least 3 orders of magnitude greater for alpha 2M-plasmin than for free plasmin was required to observe inhibition rates on comparable time scales.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Radioimmunoassay of rat acute-phase alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
A double-antibody radioimmunoassay (RIA) to acute-phase alpha 2-macroglobulin was developed for the quantitation of this large macromolecule in physiological fluids. The primary receptor for the RIA was a monospecific antiserum to purified acute-phase alpha 2-macroglobulin which produced a high titre (7.5 . 10(6)) antibody with a strong affinity for rat acute-phase alpha 2-macroglobulin (Ka = 1.24 . 10(11)) as measured by Scatchard analysis. The validity of the assay was confirmed by specificity for rat alpha 2-macroglobulin measured in various physiological fluids as assessed by parallel dose-response curves; and accuracy, measured by the analytical recovery of alpha 2-macroglobulin by the RIA in serum (104 +/- 7%) and buffer (103 +/- 7%), and the correlation (R = 0.999) of measurements of acute-phase alpha 2-macroglobulin-containing samples measured in serum and buffer. Reference acute-phase serum measured by this RIA and by rocket immunoelectrophoresis were 98.6% in agreement. Radioimmunoassay sensitivity was estimated at less than 1.0 ng alpha 2-macroglobulin/ml, measured over a range of 0-160 ng. Precision was assessed by intraassay (2.99 +/- 0.97%) and interassay (8.76 +/- 2.64%) variation. Evaluation confirmed that quantitation of rat acute-phase alpha 2-macroglobulin by this RIA met the criteria of sensitivity, validity and precision.  相似文献   

18.
Differential scanning calorimetry is shown to detect substantial structural alterations occurring on the association of proteinases with the serum glycoprotein alpha 2-macroglobulin. At pH 7.5, the thermally induced unfolding of the macroglobulin occurs at approx. 60 degrees C with a transition enthalpy of 17 J/g. Association of active thermolysin, trypsin and papain shifts the transition temperature to 77 degrees C (transition enthalpy 5 J/g), indicating that a substantial conformational change accompanies the binding event. The stoicheiometry of the thermolysin--alpha 2-macroglobulin association producing this change appears to be unity, implying the presence of co-operative subunit interactions in the mechanism of association. The calorimetric method provides a novel approach for the evaluation of conformational variants induced on protein-protein association or pre-existing in the purified macroglobulin.  相似文献   

19.
The interaction between four Crotalus atrox hemorrhagic metalloproteinases and human alpha 2-macroglobulin was investigated. The proteolytic activity of the hemorrhagic toxins Ht-c, -d, and -e against the large molecular weight protein substrates, gelatin type I and collagen type IV, was completely inhibited by alpha 2-macroglobulin. The proteolytic activity of Ht-a against the same substrates was not significantly inhibited. Each mole of alpha 2-macroglobulin bound maximally 2 mol of Ht-e and 1.1 mol of Ht-c and Ht-d. These proteinases interacted with alpha 2-macroglobulin rapidly at 22 degrees C. Rate constants based on intrinsic fluorescence measurements were 0.62 X 10(5) M-1 s-1 for interaction of alpha 2-macroglobulin with Ht-c and -d and 2.3 X 10(5) M-1 s-1 for the interaction of alpha 2-macroglobulin with Ht-e. Ht-a interacted with alpha 2-macroglobulin very slowly at 22 degrees C. Increasing the temperature to 37 degrees C and prolonging the time of interaction with alpha 2-macroglobulin resulted in the formation of Mr 90,000 fragments and high molecular weight complexes (Mr greater than 180,000), in which Ht-a is covalently bound to the carboxy-terminal fragment of alpha 2-M. The identification of the sites of specific proteolysis of alpha 2-macroglobulin shows that the cleavage sites for the four metalloproteinases are within the bait region of alpha 2-macroglobulin. Ht-c and -d cleave only at one site, the Arg696-Leu697 peptide bond, which is also the site of cleavage for plasmin, thrombin, trypsin, and thermolysin. Ht-a cleaves alpha 2-macroglobulin primarily at the same site, but a secondary cleavage site at the His694-Ala695 peptide bond was also identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Alpha(2)-macroglobulin (alpha(2)M) and its receptor, low density lipoprotein receptor-related protein (LRP), function together to facilitate the cellular uptake and degradation of beta-amyloid peptide (Abeta). In this study, we demonstrate that Abeta binds selectively to alpha(2)M that has been induced to undergo conformational change by reaction with methylamine. Denatured alpha(2)M subunits, which were immobilized on polyvinylidene difluoride membranes, bound Abeta, suggesting that alpha(2)M tertiary and quaternary structure are not necessary. To determine whether a specific sequence in alpha(2)M is responsible for Abeta binding, we prepared and analyzed defined alpha(2)M fragments and glutathione S-transferase-alpha(2)M peptide fusion proteins. A single sequence, centered at amino acids (aa) 1314-1365, was identified as the only major Abeta-binding site. Importantly, Abeta did not bind to the previously characterized growth factor-binding site (aa 718-734). Although the Abeta binding sequence is adjacent to the binding site for LRP, the results of experiments with mutated fusion proteins indicate that the two sites are distinct. Furthermore, a saturating concentration of Abeta did not inhibit LRP-mediated clearance of alpha(2)M-MA in mice. Using various methods, we determined that the K(D) for the interaction of Abeta with its binding site in the individual alpha(2)M subunit is 0.7-2.4 microm. The capacity of alpha(2)M to bind Abeta and deliver it to LRP may be greater than that predicted by the K(D), because each alpha(2)M subunit may bind Abeta and the bound Abeta may multimerize. These studies suggest a model in which alpha(2)M has three protein interaction sites with distinct specificities, mediating the interaction with Abeta, growth factors, and LRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号