首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial.  相似文献   

2.
Li E  Zhang D  Davidian M 《Biometrics》2004,60(1):1-7
The relationship between a primary endpoint and features of longitudinal profiles of a continuous response is often of interest, and a relevant framework is that of a generalized linear model with covariates that are subject-specific random effects in a linear mixed model for the longitudinal measurements. Naive implementation by imputing subject-specific effects from individual regression fits yields biased inference, and several methods for reducing this bias have been proposed. These require a parametric (normality) assumption on the random effects, which may be unrealistic. Adapting a strategy of Stefanski and Carroll (1987, Biometrika74, 703-716), we propose estimators for the generalized linear model parameters that require no assumptions on the random effects and yield consistent inference regardless of the true distribution. The methods are illustrated via simulation and by application to a study of bone mineral density in women transitioning to menopause.  相似文献   

3.
Song X  Huang Y 《Biometrics》2005,61(3):702-714
In the presence of covariate measurement error with the proportional hazards model, several functional modeling methods have been proposed. These include the conditional score estimator (Tsiatis and Davidian, 2001, Biometrika 88, 447-458), the parametric correction estimator (Nakamura, 1992, Biometrics 48, 829-838), and the nonparametric correction estimator (Huang and Wang, 2000, Journal of the American Statistical Association 95, 1209-1219) in the order of weaker assumptions on the error. Although they are all consistent, each suffers from potential difficulties with small samples and substantial measurement error. In this article, upon noting that the conditional score and parametric correction estimators are asymptotically equivalent in the case of normal error, we investigate their relative finite sample performance and discover that the former is superior. This finding motivates a general refinement approach to parametric and nonparametric correction methods. The refined correction estimators are asymptotically equivalent to their standard counterparts, but have improved numerical properties and perform better when the standard estimates do not exist or are outliers. Simulation results and application to an HIV clinical trial are presented.  相似文献   

4.
5.
Dietary questionnaires are prone to measurement error, which bias the perceived association between dietary intake and risk of disease. Short‐term measurements are required to adjust for the bias in the association. For foods that are not consumed daily, the short‐term measurements are often characterized by excess zeroes. Via a simulation study, the performance of a two‐part calibration model that was developed for a single‐replicate study design was assessed by mimicking leafy vegetable intake reports from the multicenter European Prospective Investigation into Cancer and Nutrition (EPIC) study. In part I of the fitted two‐part calibration model, a logistic distribution was assumed; in part II, a gamma distribution was assumed. The model was assessed with respect to the magnitude of the correlation between the consumption probability and the consumed amount (hereafter, cross‐part correlation), the number and form of covariates in the calibration model, the percentage of zero response values, and the magnitude of the measurement error in the dietary intake. From the simulation study results, transforming the dietary variable in the regression calibration to an appropriate scale was found to be the most important factor for the model performance. Reducing the number of covariates in the model could be beneficial, but was not critical in large‐sample studies. The performance was remarkably robust when fitting a one‐part rather than a two‐part model. The model performance was minimally affected by the cross‐part correlation.  相似文献   

6.
Wang CY  Wang N  Wang S 《Biometrics》2000,56(2):487-495
We consider regression analysis when covariate variables are the underlying regression coefficients of another linear mixed model. A naive approach is to use each subject's repeated measurements, which are assumed to follow a linear mixed model, and obtain subject-specific estimated coefficients to replace the covariate variables. However, directly replacing the unobserved covariates in the primary regression by these estimated coefficients may result in a significantly biased estimator. The aforementioned problem can be evaluated as a generalization of the classical additive error model where repeated measures are considered as replicates. To correct for these biases, we investigate a pseudo-expected estimating equation (EEE) estimator, a regression calibration (RC) estimator, and a refined version of the RC estimator. For linear regression, the first two estimators are identical under certain conditions. However, when the primary regression model is a nonlinear model, the RC estimator is usually biased. We thus consider a refined regression calibration estimator whose performance is close to that of the pseudo-EEE estimator but does not require numerical integration. The RC estimator is also extended to the proportional hazards regression model. In addition to the distribution theory, we evaluate the methods through simulation studies. The methods are applied to analyze a real dataset from a child growth study.  相似文献   

7.
This paper develops a model for repeated binary regression when a covariate is measured with error. The model allows for estimating the effect of the true value of the covariate on a repeated binary response. The choice of a probit link for the effect of the error-free covariate, coupled with normal measurement error for the error-free covariate, results in a probit model after integrating over the measurement error distribution. We propose a two-stage estimation procedure where, in the first stage, a linear mixed model is used to fit the repeated covariate. In the second stage, a model for the correlated binary responses conditional on the linear mixed model estimates is fit to the repeated binary data using generalized estimating equations. The approach is demonstrated using nutrient safety data from the Diet Intervention of School Age Children (DISC) study.  相似文献   

8.
Greene WF  Cai J 《Biometrics》2004,60(4):987-996
We consider measurement error in covariates in the marginal hazards model for multivariate failure time data. We explore the bias implications of normal additive measurement error without assuming a distribution for the underlying true covariate. To correct measurement-error-induced bias in the regression coefficient of the marginal model, we propose to apply the SIMEX procedure and demonstrate its large and small sample properties for both known and estimated measurement error variance. We illustrate this method using the Lipid Research Clinics Coronary Primary Prevention Trial data with total cholesterol as the covariate measured with error and time until angina and time until nonfatal myocardial infarction as the correlated outcomes of interest.  相似文献   

9.
Zucker DM  Spiegelman D 《Biometrics》2004,60(2):324-334
We consider the Cox proportional hazards model with discrete-valued covariates subject to misclassification. We present a simple estimator of the regression parameter vector for this model. The estimator is based on a weighted least squares analysis of weighted-averaged transformed Kaplan-Meier curves for the different possible configurations of the observed covariate vector. Optimal weighting of the transformed Kaplan-Meier curves is described. The method is designed for the case in which the misclassification rates are known or are estimated from an external validation study. A hybrid estimator for situations with an internal validation study is also described. When there is no misclassification, the regression coefficient vector is small in magnitude, and the censoring distribution does not depend on the covariates, our estimator has the same asymptotic covariance matrix as the Cox partial likelihood estimator. We present results of a finite-sample simulation study under Weibull survival in the setting of a single binary covariate with known misclassification rates. In this simulation study, our estimator performed as well as or, in a few cases, better than the full Weibull maximum likelihood estimator. We illustrate the method on data from a study of the relationship between trans-unsaturated dietary fat consumption and cardiovascular disease incidence.  相似文献   

10.
11.
The nonparametric transformation model makes no parametric assumptions on the forms of the transformation function and the error distribution. This model is appealing in its flexibility for modeling censored survival data. Current approaches for estimation of the regression parameters involve maximizing discontinuous objective functions, which are numerically infeasible to implement with multiple covariates. Based on the partial rank (PR) estimator (Khan and Tamer, 2004), we propose a smoothed PR estimator which maximizes a smooth approximation of the PR objective function. The estimator is shown to be asymptotically equivalent to the PR estimator but is much easier to compute when there are multiple covariates. We further propose using the weighted bootstrap, which is more stable than the usual sandwich technique with smoothing parameters, for estimating the standard error. The estimator is evaluated via simulation studies and illustrated with the Veterans Administration lung cancer data set.  相似文献   

12.
We consider the problem of jointly modeling survival time and longitudinal data subject to measurement error. The survival times are modeled through the proportional hazards model and a random effects model is assumed for the longitudinal covariate process. Under this framework, we propose an approximate nonparametric corrected-score estimator for the parameter, which describes the association between the time-to-event and the longitudinal covariate. The term nonparametric refers to the fact that assumptions regarding the distribution of the random effects and that of the measurement error are unnecessary. The finite sample size performance of the approximate nonparametric corrected-score estimator is examined through simulation studies and its asymptotic properties are also developed. Furthermore, the proposed estimator and some existing estimators are applied to real data from an AIDS clinical trial.  相似文献   

13.
We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time-dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time-dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time-dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time-dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk-set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.  相似文献   

14.
15.
Li L  Shao J  Palta M 《Biometrics》2005,61(3):824-830
Covariate measurement error in regression is typically assumed to act in an additive or multiplicative manner on the true covariate value. However, such an assumption does not hold for the measurement error of sleep-disordered breathing (SDB) in the Wisconsin Sleep Cohort Study (WSCS). The true covariate is the severity of SDB, and the observed surrogate is the number of breathing pauses per unit time of sleep, which has a nonnegative semicontinuous distribution with a point mass at zero. We propose a latent variable measurement error model for the error structure in this situation and implement it in a linear mixed model. The estimation procedure is similar to regression calibration but involves a distributional assumption for the latent variable. Modeling and model-fitting strategies are explored and illustrated through an example from the WSCS.  相似文献   

16.
This paper presents new methods, using a Bayesian approach, for analyzing longitudinal count data with excess zeros and nonlinear effects of continuously valued covariates. In longitudinal count data there are many problems that can make the use of a zero-inflated Poisson (ZIP) model ineffective. These problems are unobserved heterogeneity and nonlinear effects of continuously valued covariates. Our proposed semiparametric model can simultaneously handle these problems in a unified framework. The framework accounts for heterogeneity by incorporating random effects and has two components. The parametric component of the model which deals with the linear effects of time invariant covariates and the non-parametric component which gives an arbitrary smooth function to model the effect of time or time-varying covariates on the logarithm of mean count. The proposed methods are illustrated by analyzing longitudinal count data on the assessment of an efficacy of pesticides in controlling the reproduction of whitefly.  相似文献   

17.
Outcome mismeasurement can lead to biased estimation in several contexts. Magder and Hughes (1997, American Journal of Epidemiology 146, 195-203) showed that failure to adjust for imperfect outcome measures in logistic regression analysis can conservatively bias estimation of covariate effects, even when the mismeasurement rate is the same across levels of the covariate. Other authors have addressed the need to account for mismeasurement in survival analysis in selected cases (Snapinn, 1998, Biometrics 54, 209-218; Gelfand and Wang, 2000, Statistics in Medicine 19, 1865-1879; Balasubramanian and Lagakos, 2001, Biometrics 57, 1048-1058, 2003, Biometrika 90, 171-182). We provide a general, more widely applicable, adjusted proportional hazards (APH) method for estimation of cumulative survival and hazard ratios in discrete time when the outcome is measured with error. We show that mismeasured failure status in a standard proportional hazards (PH) model can conservatively bias estimation of hazard ratios and that inference, in most practical situations, is more severely affected by poor specificity than by poor sensitivity. However, in simulations over a wide range of conditions, the APH method with correctly specified mismeasurement rates performs very well.  相似文献   

18.
Song X  Wang CY 《Biometrics》2008,64(2):557-566
Summary .   We study joint modeling of survival and longitudinal data. There are two regression models of interest. The primary model is for survival outcomes, which are assumed to follow a time-varying coefficient proportional hazards model. The second model is for longitudinal data, which are assumed to follow a random effects model. Based on the trajectory of a subject's longitudinal data, some covariates in the survival model are functions of the unobserved random effects. Estimated random effects are generally different from the unobserved random effects and hence this leads to covariate measurement error. To deal with covariate measurement error, we propose a local corrected score estimator and a local conditional score estimator. Both approaches are semiparametric methods in the sense that there is no distributional assumption needed for the underlying true covariates. The estimators are shown to be consistent and asymptotically normal. However, simulation studies indicate that the conditional score estimator outperforms the corrected score estimator for finite samples, especially in the case of relatively large measurement error. The approaches are demonstrated by an application to data from an HIV clinical trial.  相似文献   

19.
Maples JJ  Murphy SA  Axinn WG 《Biometrics》2002,58(4):754-763
We extend the proportional hazards model to a two-level model with a random intercept term and random coefficients. The parameters in the multilevel model are estimated by a combination of EM and Newton-Raphson algorithms. Even for samples of 50 groups, this method produces estimators of the fixed effects coefficients that are approximately unbiased and normally distributed. Two different methods, observed information and profile likelihood information, will be used to estimate the standard errors. This work is motivated by the goal of understanding the determinants of contraceptive use among Nepalese women in the Chitwan Valley Family Study (Axinn, Barber, and Ghimire, 1997). We utilize a two-level hazard model to examine how education and access to education for children covary with the initiation of permanent contraceptive use.  相似文献   

20.
Li L  Lin X  Brown MB  Gupta S  Lee KH 《Biometrics》2004,60(2):451-460
We propose a population pharmacokinetic (PK) model with time-dependent covariates measured with errors. This model is used to model S-oxybutynin's kinetics following an oral administration of Ditropan, and allows the distribution rate to depend on time-dependent covariates blood pressure and heart rate, which are measured with errors. We propose two two-step estimation methods: the second-order two-step method with numerical solutions of differential equations (2orderND), and the second-order two-step method with closed form approximate solutions of differential equations (2orderAD). The proposed methods are computationally easy and require fitting a linear mixed model at the first step and a nonlinear mixed model at the second step. We apply the proposed methods to the analysis of the Ditropan data, and evaluate their performance using a simulation study. Our results show that the 2orderND method performs well, while the 2orderAD method can yield PK parameter estimators that are subject to considerable biases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号