首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haplochromine cichlids used to be the main prey of the introduced Nile perch, Lates niloticus, in Lake Victoria. After depletion of the haplochromine stocks at the end of the 1980s, Nile perch shifted to the shrimp Caridina nilotica and to a lesser degree to its own young and the cyprinid Rastrineobola argentea. In the present study, we investigated the Nile perch diet in the northern Mwanza Gulf after resurgence of some of the haplochromine species and compared it with data collected in the same area in 1988/1989. It became clear that haplochromines are again the major prey of Nile perch. The dietary shift from invertebrate feeding (shrimps) to feeding on fish (haplochromine cichlids) occurs at a smaller size than it did when Nile perch were taking primarily dagaa and juvenile Nile perch as their fish prey. The apparent preference for haplochromines as prey has reduced the degree of cannibalism considerably, which may have a positive impact on Nile perch recruitment.  相似文献   

2.
Flexibility in the feeding habits of juvenile Nile perch (1–30 cm total length) was studied from September 1988 to September 1989 at four sites (depth range: 1–25 m) in the Mwanza Gulf of Lake Victoria. During this period haplochromine cichlids were virtually absent in the area. We looked at the combined effects of predator size, season and habitat. Stomach content analysis showed that with increase in size, the diet of Nile perch shifted from zooplankton and midge larvae, to macro-invertebrates (shrimps and dragonfly nymphs) and fish. At a size of 3–4 cm Nile perch shifted from size-selective predation on the largest cyclopoids to predation on the largest, less abundant, calanoids. Zooplanktivory ended at a size of ca. 5 cm. Although an ontogenetic shift in the diet of juvenile Nile perch was obvious at all sampling stations, the contribution of prey types appeared to be habitat related. With increasing water depth the frequency of occurrence in the diet of most prey types decreased, but that of shrimps increased. At the entrance of the gulf (20–25 m deep) shrimps were the main food source throughout the year. Halfway the gulf (12–16 m), Nile perch showed seasonality in their feeding behaviour. Shrimps were taken there especially during the rainy season (January to May) when their densities at this station were high, whereas cannibalism prevailed during the rest of the year. In an environment with Nile perch and dagaa as alternative prey, shrimps were taken almost exclusively. They could be regarded as a key prey for Nile perch between 5 and 30 cm.  相似文献   

3.
The shrimp Caridina nilotica is a major prey of the introduced Nile perch in Lake Victoria. In spite of heavy predation, the density of shrimps increased after the Nile perch boom and the concomitant disappearance of the haplochromine cichlids. In the same period, the mean size of gravid shrimps and the size at first maturity declined. This seems to indicate an increased predation pressure on adult shrimps. Before the Nile perch upsurge, specialised shrimp eaters and piscivores, among the haplochromine cichlids, only took adult shrimps, whereas we assume that most haplochromines used to include juvenile shrimps into their diet. Another important predator on adult shrimps was Bagrus docmak. The combined density of predators on adult shrimps in the pre-Nile perch era was estimated at 10 kg ha−1 and the potential predators on juveniles were estimated at 170 kg ha−1. After the Nile perch upsurge, only Nile perch up to 10 cm TL and Rastrineobola argentea fed on juvenile shrimps (ca. 36 kg ha−1) and Nile perch from 10 to 50 cm TL (ca. 13 kg ha−1) fed on adults. These rough estimates of the biomass of predators on shrimps before and after the Nile perch upsurge indicate a reduced predation pressure on juvenile shrimps. The disappearance of the haplochromines may have released competition with small Nile perch for juvenile shrimps, thus enhancing the recruitment of Nile perch.  相似文献   

4.
Nile perch, a large predatory fish, was introduced into Lake Victoria in 1954. The upsurge of Nile perch in Lake Victoria was first observed in the Nyanza Gulf, Kenya, in 1979. In Ugandan waters this occurred 2–3 years later and in the Tanzanian Mwanza Gulf 4–5 years later. At the beginning of the upsurge in the Mwanza Gulf in 1983/1984 only sub-adult and adult fishes were found. The first juveniles appeared in 1985, suggesting that the initial increase of Nile perch was mainly caused by migration of sub-adults and adults. Shortly after the onset of trawl fishery in the area in 1973, haplochromines in the Mwanza Gulf started to decline. The final disappearance of the haplochromines, in 1987, only occurred after the Nile perch boom, and despite the abandoning of the haplochromine fishery in 1986. We hypothesize that the decline of haplochromines decreased predation on and competition with juvenile Nile perch and then facilitated survival of these juveniles. Consequently the immigration of sub-adult and adult Nile perch in an area may have paved the way for successful recruitment. Over-exploitation of haplochromine cichlids in the 1970s in the Nyanza Gulf, where the Nile perch upsurge was first observed, may have played a similar role.  相似文献   

5.
The fish stocks of Lakes Kyoga and Victoria have changed since Nile perch, Lates niloticus (L.), was introduced, and this is reflected in the prey ingested by the predator. Initially, haplochromine cichlids constituted the main prey of most sizes of Nile perch. As the stocks of these have declined, Caridina nilotica (Roux) and Anisopteran nymphs have become the dominant food of the juveniles, while Rastrineobola argentea (Pellegrin), juvenile Nile perch and Oreochromis niloticus (L.) have become the main food of larger Nile perch. Apart from R. argentea , most of the native fish species of these lakes have disappeared. The stocks of Nile perch in Lake Kyoga, to which it was introduced earlier than to Lake Victoria, have declined after dominating the fishery since 1965. and have been superseded by O. niloricus . an introduced herbivore. Similar changes are now occurring in Lake Victoria. The Nile perch might not maintain the high yield realized in the two lakes when haplochromines were abundant. It is therefore necessary to exercise caution with high and long-term investments aimed specifically at developing the Nile perch fishery.  相似文献   

6.
Nile perch was introduced into lakes Victoria and Kyoga in the 1950s and 1960s from Lake Albert. The changes in prey eaten and the life history characteristics of Nile perch in lakes Victoria and Kyoga from the 1960s to 1990s were examined and compared with Lake Albert. The dominant prey eaten changed from haplochromines, Caridina nilotica, Rastrineobola argentea, and Nile perch juveniles. The condition factor deteriorated from 1.4 in 1960s to 1.2 in 1990s, compared with 1.3 in Lake Albert suggesting a reduction in food supply. Therefore, exploitation of Nile perch prey should be controlled. The size at first maturity increased from 30–40 to 40–50 cm and 50–59 to 80–100 cm for males and females, which is similar to Lake Albert. Sex ratios decreased from 85–100 to 20–65 females for every 100 males suggesting that Nile perch had less capacity to replenish its stocks such that breeding females should be protected. As males mature at 50–55 cm and females at 80–100 cm, immature males of <50 cm and breeding females of >100 cm could be protected through size selective exploitation of fish of 50–100 cm using gillnets of 127–254 mm.  相似文献   

7.
Wanink  Jan H.  Goudswaard  Kees 《Hydrobiologia》1994,279(1):367-376

In recent years the ichthyofauna of Lake Victoria, the world's largest tropical lake, has gone through dramatic changes. The population of Nile perch, a large predator which has been introduced into the lake by man, increased explosively at the expense of many haplochromine cichlid species. At the same time, numbers of a small cyprinid (dagaa) rose sharply.

Previously Pied Kingfishers on Lake Victoria fed mainly on haplochromines. Only the youngest nestlings depended on dagaa as primary food. The current diet of adult birds clearly reflects the changes which have occurred in the fish community. Pellet analysis reveals a shift towards a diet composed of almost 100% dagaa.

The change in prey species composition has increased the number of fish a kingfisher needs to catch daily in order to meet its energetic demands, because:

  1. (1)

    the mean size of haplochromines is larger than that of dagaa;

  2. (2)

    (2) the mean size of dagaa has decreased since the increase in Nile perch;

  3. (3)

    (3) the weight of dagaa is lower than that of haplochromines of equal size;

  4. (4)

    (4) mainly juvenile dagaa and adults in poor condition are accessible to kingfishers.

  相似文献   

8.
Synopsis The Lake Victoria fish fauna included an endemic cichlid flock of more than 300 species. To boost fisheries, Nile perch (Lates sp.) was introduced into the lake in the 1950s. In the early 1980s an explosive increase of this predator was observed. Simultaneously, catches of haplochromines decreased. This paper describes the species composition of haplochromines in a research area in the Mwanza Gulf of Lake Victoria prior to the Nile perch upsurge. The decline of the haplochromines as a group and the decline of the number of species in various habitats in the Mwanza Gulf was monitored between 1979 and 1990. Of the 123+ species originally caught at a series of sampling stations ca. 80 had disappeared from the catches after 1986. In deepwater regions and in sub-littoral regions haplochromine catches decreased to virtually zero after the Nile perch boom. Haplochromines were still caught in the littoral regions where Nile perch densities were lower. However, a considerable decrease of species occurred in these regions too. It is expected that a remnant of the original haplochromine fauna will survive in the littoral region of the lake. Extrapolation of the data of the Mwanza Gulf to the entire lake would imply that approximately 200 of the 300+ endemic haplochromine species have already disappeared, or are threatened with extinction. Although fishing had an impact on the haplochromine stocks, the main cause of their decline was predation by Nile perch. The speed of decline differed between species and appeared to depend on their abundance and size, and on the degree of habitat overlap with Nile perch. Since the Nile perch upsurge, the food web of Lake Victoria has changed considerably and the total yield of the fishery has increased three to four times. Dramatic declines of native species have also been observed in other lakes as a result of the introduction of alien predators. However, such data concern less speciose communities and, in most cases, the actual process of extinction has not been monitored.  相似文献   

9.
Understanding of migration patterns is essential in the interpretation of hydro-acoustic stock assessment data of partly demersal partly pelagic fish stocks. In this paper we provide this kind of information for some species that were common in the Mwanza Gulf of Lake Victoria in the 1980s, before and after the upsurge of introduced Nile perch (Lates niloticus). Detritivorous haplochromines and Nile tilapia (Oreochromis niloticus), both stay near the bottom during day and night. Feeding seems to occur predominantly during the day. The zooplanktivorous haplochromines and dagaa (Rastrineobola argentea) dwell near the bottom by day and migrate towards the surface during the night. They seem to follow their prey, zooplankton and lake-fly larvae. Piscivorous nembe (Schilbe intermedius) show similar migration patterns to zooplanktivorous fishes, but their behaviour cannot be unambiguously explained by pursuit of prey. Nile perch to some extend migrate into the column at night, though the majority remains near the bottom. Feeding takes place during day and night.  相似文献   

10.
This study looked for evidence of trophic shifts in the diet of two predatory catfishes ( Bagrus docmac and Schilbe intermedius ) following the establishment of introduced Nile perch ( Lates niloticus ) into lakes of the Lake Victoria basin. Bagrus docmac exhibited a shift from a primarily piscivorous diet dominated by haplochromine cichlids to a broader diet that included a significant proportion of invertebrates and the cyprinid fish, Rastrineobola argentea , which became abundant following depletion of the haplochromines. Schilbe intermedius exhibited a trophic shift from a piscivorous diet dominated by haplochromines to an insectivorous diet. The flexibility in diet exhibited by these two catfishes may have permitted these species to persist, albeit in reduced numbers, subsequent to the introduction of Nile perch and may facilitate resurgence as fishing pressure reduces numbers of large Nile perch.  相似文献   

11.
Prior to the 1980s, lakes Kyoga and Victoria previously supported an exceptionally diverse haplochromine fish fauna comprising at least 11 trophic groups. The species and trophic diversity in these lakes decreased when the introduced Nile perch depleted haplochromine stocks. From December 1996 to October 1998, we studied species and trophic diversity of haplochromine fishes in six satellite lakes without Nile perch in the Kyoga basin and compared them with the Kyoga main lake against historical data from Lake Victoria where Nile perch were introduced. Forty‐one species were found in the study area, of which, the Kyoga satellite lakes contributed 37 species in comparison to only 14 from the Kyoga main lake. Analysis of trophic diversity based on 24 species that contained food material revealed seven haplochromine trophic groups (insectivores, peadophages, piscivores, algal eaters, higher plant eaters, molluscivores and detritivores) in the Kyoga satellite lakes in comparison to two trophic groups (insectivores and molluscivores) in the Kyoga main lake. Many of the species and trophic groups of haplochromines depleted by the introduced Nile perch in lakes Kyoga and Victoria still survive in the Kyoga satellite lakes. This is attributed to the absence of Nile perch in those lakes. Nile perch has been prevented from spreading into the satellite lakes by swamp vegetation that separate them from the main lakes. If these swamps prevent Nile perch from spreading into the lakes, it is possible to conserve fish species, especially haplochromines, which are threatened by introduction of Nile perch in the main lakes.  相似文献   

12.
13.
The transformation of Lake Victoria that began in 1980 followed the population explosion of Nile perch Lates niloticus, causing the apparent extirpation of 500+ endemic haplochromine species and dramatic physico-chemical changes. Officially introduced in 1962–1963, but present earlier, the reasons for the long delay before its population exploded are discussed. The hypothesis that it occurred only after the haplochromine decline is evaluated, but haplochromines declined only after the Nile perch expansion began. The sudden eutrophication of the lake was attributed to Nile perch, but evidence of eutrophication from 1950 onwards led some researchers to conclude that it was the result of climatic changes. We conclude that the haplochromine destruction disrupted the complex food webs that existed prior to the upsurge of Nile perch. The depletion of fish biomass by Nile perch may have been the source of extra phosphorus responsible for the eutrophication of the lake. After the Nile perch explosion in 1980 the fish population came to be dominated by only three species, but fisheries productivity increased at least 10-fold. Fishing has caused demographic changes in Nile perch, which may have allowed some haplochromine species to recover. The condition of the lake appears to have stabilised since 2000, partly because the fish biomass has risen to at least 2 × 106 t, replacing the ‘lost’ biomass and restoring some ecosystem functioning.  相似文献   

14.
Variation in diet of yellow perch (Perca flavescens) in a Quebec reservoir   总被引:1,自引:1,他引:0  
We determined the diet of 1 to 1 1/2 a old yellow perch (Perca flavescens) in a Quebec reservoir, relative to occurrences of available prey species and size classes of prey. We used Schindler-Patalas trap samples taken over four 24-h intervals between June and September 1981 to determine size distribution of available prey species. Relative abundances and size distribution of ingested prey species were determined from examination of gut contents of perch trapped by gill nets during the same time intervals. Electivity values of different prey species and of different size classes of prey were determined. Larger zooplankton prey (e.g.Epischura andLeptodora) were generally preferred but there was considerable variability in diet among individual fish that cannot be explained by patterns of prey availability. Within particular size classes of prey, perch have definite preferences, e.g. when perch consume small prey, they preferBosmina to other similar-sized prey. These results are discussed in relation to theories attempting to describe and predict feeding patterns of planktivorous fish species.Deceased, June 6, 1983  相似文献   

15.
Synopsis There has been a decline, and in some cases an almost total disappearance, of many of the native fish species of lakes Victoria and Kyoga in East Africa since the development of the fisheries of these lakes was initiated at the beginning of this century. The Nile perch, Lates niloticus, a large, voracious predator which was introduced into these lakes about the middle of the century along with several tilapiine species, is thought to have caused the reduction in the stocks of several species. But overfishing and competition between different species also appear to have contributed to this decline. By the time the Nile perch had become well established, stocks of the native tilapiine species had already been reduced by overfishing. The Labeo victorianus fishery had also deteriorated following intensive gillnetting of gravid individuals on breeding migrations. L. niloticus is, however, capable of preying on the species which haven been overfished and could have prevented their stocks from recovering from overfishing. L. niloticus is also directly responsible for the decline in populations of haplochromine cichlids which were abundant in these lakes before the Nile perch became established. Even without predation by Nile perch, it has been shown that the haplochromine cichlids could not have withstood heavy commercial exploitation if a trawl fishery had been established throughout Lake Victoria. Their utilisation for human food has also posed some problems. The abundance of the native tilapiine species may also have been reduced through competition with introduced species which have similar ecological requirements. At present, the Nile perch and one of the introduced tilapiine species, Oreochromis niloticus, form the basis of the fisheries of lakes Victoria and Kyoga.Invited editorial  相似文献   

16.
The introduction of the predatory Nile perch, Lates niloticus, into the Lake Victoria basin coincided with a dramatic decline in fish species richness and diversity. This study focused on interactions between Nile perch and indigenous fishes in Lake Nabugabo, Uganda, a small satellite lake of Lake Victoria. We evaluated how the foraging impact of juvenile Nile perch on prey fishes varied with the size of the predator. We also evaluated the role of wetland ecotones in minimizing interaction between Nile perch and indigenous fishes. Wetland ecotones in Lake Nabugabo were characterized by complex structure (e.g., dense vegetation) and lower dissolved oxygen levels than non-wetland (exposed) areas. Nile perch (8.6–42.2cm, TL) were 3.7 times more abundant in offshore exposed areas than in inshore areas near wetland ecotones, and the proportion of Nile perch using wetland and exposed areas was independent of their body size. However, species richness was higher in waters at wetland ecotones than in exposed areas. Nile perch (5–35cm, TL) exhibited a shift in diet at approximately 30cm TL from feeding primarily on invertebrates to piscivory. Although the shift to piscivory occurred at approximately the same body size for Nile perch from both wetland and exposed habitats, the shift to piscivory was less abrupt in Nile perch captured near wetland ecotones. Nile perch from wetland areas consumed a greater diversity and a larger percentage of fish prey than those from exposed sites. However, the low abundance of Nile perch in wetland ecotones suggested that interaction between predator and prey in these areas is much reduced.  相似文献   

17.
Studies of the food of introduced Nile tilapia, Oreochromis niloticus (L.) with respect to size, habitat and season were conducted between November 1998 and October 2000 in Kenyan waters of Lake Victoria. Stomach contents of 1980 specimens collected by demersal trawl and seining were analysed. Nile tilapia originally known to be herbivorous, feeding mostly on algae has diversified its diet to include insects, fish, algae and plant materials. The major diet of fish <5 cm total length was zooplankton whereas bigger fish included a wider range of food items in their diet. There was spatial variation in diet with insects and algae dominating in the gulf and open water habitats respectively. There was no seasonal variation in the food items ingested and diel feeding regime indicated that O. niloticus is a diurnal feeder. The shift in diet could be due to ecological and environmental changes in Lake Victoria, which have been associated with changes in composition and diversity of fish and invertebrate fauna, emergence and dominance of different flora including water hyacinth Eichhornia crassipes (Mart.) Solms‐Laub., and algae communities. The feeding habit of O. niloticus is discussed in the context of changes occurring in the lake.  相似文献   

18.
Summary Densities of the cladoceran, Holopedium gibberum, were manipulated in 18 enclosures containing juvenile (age 0+) yellow perch (Perca flavescens) and mean-lake densities of other zooplankton. In enclosures, where nearlake densities of all zooplankton species including Holopedium were maintained, young-of-the-year perch grew significantly heavier and longer than in experimental enclosures where Holopedium was excluded. Holopedium comprised between 15–45% of the diet (wet weight) of perch in the first 2 weeks of July in the control treatment (Holopedium at or near ambient lake densities) and only 3–7% of total biomass ingested in the experimental treatment (Holopedium density selectively reduced). Predation on Holopedium decreased dramatically after the 2nd week of July in the control treatment after which Chaoborus, chironomids, and Sida became dominant prey items (by weight) of juvenile perch. These findings suggest that growth and survivorship of age 0+ perch in Precambrian Shield lakes may be coupled to Holopedium abundance. Thus, utilization of Holopedium by young-of-the-year yellow perch may affect recruitment of this species since overwintering survivorship, range of accessible prey sizes or species, and vulnerability of juvenile perch to predation by larger fish depend on body size, which is reduced when Holopedium is excluded from the diet.  相似文献   

19.
Synopsis Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus, were originally transplanted from Lake Albert in western Uganda to the African Great Lakes, Lake Victoria and Lake Kyoga, where they are partially implicated in reduction of the fish species diversity. Lake Albert is facing multiple environmental changes, including declining fish species diversity, hyper-eutrophication, hypoxia, and reduced fish catches. To examine the role of Nile perch and Nile tilapia in the food web in their native Lake Albert, we estimated their diets using stable nitrogen and carbon isotopes. In Lake Albert, the tilapiine congeners (closely related species), Tilapia zillii, Oreochromis leucostictus, and Sarethorodon galilaeus, and the centropomid Nile perch congener, Lates macrophthalmus, have narrower diet breath in the presence of the native O. niloticus and L. niloticus. A computerized parameter search of dietary items for five commercially important fish species (Hydrocynus forskahlii, Bagrus bayad, L. niloticus, Alestes baremose and Brycinus nurse) was completed using a static isotopic mixing model. The outcome of the simulation for most fish species compared favorably to previously published stomach contents data for the Lake Albert fishes dating back to 1928, demonstrating agreement between stable isotope values and analyses of stomach contents. While there were some indications of changes in the diets of L. niloticus and A. baremose diets over the past 20 years in parallel with other changes in the lake, for the most part, food web structure in this lake remained stable since 1928. The Lake Albert fish assemblage provides insight into the invasion success of L. niloticus and O. niloticus.  相似文献   

20.
The diet and diel feeding behaviour of the banded guitarfish Zapteryx xyster were examined along the Pacific coast of Costa Rica. A sample of 235 stomachs was collected between March 2010 and December 2011 as part of an ongoing shrimp‐trawl by‐catch monitoring programme. Samples from multiple day and night periods allowed testing the hypothesis that Z. xyster is more active at night, thus increasing the amount of food intake during night‐time. Overall, shrimps (52·3% prey‐specific index of relative importance, PSIRIi) and teleosts (27·2% PSIRIi) were the most important prey categories. Juveniles fed primarily on smaller shrimps (Solenocera spp.), while adults shifted to larger prey. The amount of food consumed (as % of bodymass) by juvenile and adult Z. xyster increased significantly between 0400 and 1200 hours, while the proportion of empty stomachs decreased during the same time interval. These findings contradict the hypothesis that Z. xyster is more active and feeds at night. The study also revealed that Z. xyster, particularly juveniles, forage on several shrimp species and overlap spatially with the Costa Rican bottom‐trawl fisheries. This has important management and conservation implications as Z. xyster may be experiencing high by‐catch rates, and because of their life history is presumed to be vulnerable to intense levels of exploitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号