首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area.  相似文献   

2.
Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes.  相似文献   

3.
The Effect of Deleterious Mutations on Neutral Molecular Variation   总被引:12,自引:12,他引:0  
Selection against deleterious alleles maintained by mutation may cause a reduction in the amount of genetic variability at linked neutral sites. This is because a new neutral variant can only remain in a large population for a long period of time if it is maintained in gametes that are free of deleterious alleles, and hence are not destined for rapid elimination from the population by selection. Approximate formulas are derived for the reduction below classical neutral values resulting from such background selection against deleterious mutations, for the mean times to fixation and loss of new mutations, nucleotide site diversity, and number of segregating sites. These formulas apply to random-mating populations with no genetic recombination, and to populations reproducing exclusively asexually or by self-fertilization. For a given selection regime and mating system, the reduction is an exponential function of the total mutation rate to deleterious mutations for the section of the genome involved. Simulations show that the effect decreases rapidly with increasing recombination frequency or rate of outcrossing. The mean time to loss of new neutral mutations and the total number of segregating neutral sites are less sensitive to background selection than the other statistics, unless the population size is of the order of a hundred thousand or more. The stationary distribution of allele frequencies at the neutral sites is correspondingly skewed in favor of rare alleles, compared with the classical neutral result. Observed reductions in molecular variation in low recombination genomic regions of sufficiently large size, for instance in the centromere-proximal regions of Drosophila autosomes or in highly selfing plant populations, may be partly due to background selection against deleterious mutations.  相似文献   

4.
The formation of two spherical model membranes at the tips of two syringes has allowed us to study the role of gangliosides in membrane adhesion and look for changes in conductance between two such membranes during the process of adhesion. Membranes were formed in aqueous 100 mM NaCl, 10 mM KCl, 1 mM CaCl2 from 1% (w/v) egg phosphatidylcholine in n-decane, with or without mixed bovine brain gangliosides. After thinning to the 'black' bilayer state, two membranes were moved into contact. With gangliosides, the contact area and conductance increased colinearly with time over a 5 to 20 min period of adhesion. The role of electrostatic bridging by calcium was investigated. In the absence of calcium or in the presence of 2 mM EDTA, adhesion proceeded after a longer lag time at about one-half the normal rate. As the ganglioside concentration was increased from 0 to 15 mol%, the electrical conductance of individual membranes decreased 3-fold from 48 +/- 30 nS/cm2 to 17 +/- 13 nS/cm2. The conductance was pH dependent with a minimum at neutral values. At neutral pH, when two membranes containing 4.1 mol% gangliosides adhered, the region of adhesion had a specific conductance three times that of the nonadhering regions of membranes. Without gangliosides, the specific conductance of the contact region was the same as that of non-adhering regions of the membrane. These data suggest that mixed gangliosides can mediate an adhesion-dependent increase in conductance.  相似文献   

5.
Stochastic simulations of the infinite sites model were used to study the behavior of genetic diversity at a neutral locus in a genomic region without recombination, but subject to selection against deleterious alleles maintained by recurrent mutation (background selection). In large populations, the effect of background selection on the number of segregating sites approaches the effct on nucleotide site diversity, i.e., the reduction in genetic variability caused by background selection resembles that caused by a simple reduction in effective population size. We examined, by coalescence-based methods, the power of several tests for the departure from neutral expectation of the frequency spectra of alleles in samples from randomly mating populations (TAJIMA's, FU and LI's, and WATTERSON's tests). All of the tests have low power unless the selection against mutant alleles is extremely weak. In Drosophila, significant TAJIMA's tests are usually not obtained with empirical data sets from loci in genomic regions with restricted recombination frequencies and that exhibit low genetic diversity. This is consistent with the operation of background selection as opposed to selective sweeps. It remains to be decided whether background selection is sufficient to explain the observed extent of reduction in diversity in regions of restricted recombination.  相似文献   

6.
Borge T  Webster MT  Andersson G  Saetre GP 《Genetics》2005,171(4):1861-1873
In geographic areas where pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breed in sympatry, hybridization occurs, leading to gene flow (introgression) between the two recently diverged species. Notably, while such introgression is observable at autosomal loci it is apparently absent at the Z chromosome, suggesting an important role for genes on the Z chromosome in creating reproductive isolation during speciation. To further understand the role of Z-linked loci in the formation of new species, we studied genetic variation of the two species from regions where they live in allopatry. We analyzed patterns of polymorphism and divergence in introns from 9 Z-linked and 23 autosomal genes in pied and collared flycatcher males. Average variation on the Z chromosome is greatly reduced compared to neutral expectations based on autosomal diversity in both species. We also observe significant heterogeneity between patterns of polymorphism and divergence at Z-linked loci and a relative absence of polymorphisms that are shared by the two species on the Z chromosome compared to the autosomes. We suggest that these observations may indicate the action of recurrent selective sweeps on the Z chromosome during the evolution of the two species, which may be caused by sexual selection acting on Z-linked genes. Alternatively, reduced variation on the Z chromosome could result from substantially higher levels of introgression at autosomal than at Z-linked loci or from a complex demographic history, such as a population bottleneck.  相似文献   

7.
Designating amino-acid sequences that fold into a common main-chain structure as "neutral sequences" for the structure, regardless of their function or stability, we investigated the distribution of neutral sequences in protein sequence space. For four distinct target structures (alpha, beta,alpha/beta and alpha+beta types) with the same chain length of 108, we generated the respective neutral sequences by using the inverse folding technique with a knowledge-based potential function. We assumed that neutral sequences for a protein structure have Z scores higher than or equal to fixed thresholds, where thresholds are defined as the Z score for the corresponding native sequence (case 1) or much greater Z score (case 2). An exploring walk simulation suggested that the neutral sequences mapped into the sequence space were connected with each other through straight neutral paths and formed an inherent neutral network over the sequence space. Through another exploring walk simulation, we investigated contiguous regions between or among the neutral networks for the distinct protein structures and obtained the following results. The closest approach distance between the two neutral networks ranged from 5 to 29 on the Hamming distance scale, showing a linear increase against the threshold values. The sequences located at the "interchange" regions between the two neutral networks have intermediate sequence-profile-scores for both corresponding structures. Introducing a "ball" in the sequence space that contains at least one neutral sequence for each of the four structures, we found that the minimal radius of the ball that is centered at an arbitrary position ranged from 35 to 50, while the minimal radius of the ball that is centered at a certain special position ranged from 20 to 30, in the Hamming distance scale. The relatively small Hamming distances (5-30) may support an evolution mechanism by transferring from a network for a structure to another network for a more beneficial structure via the interchange regions.  相似文献   

8.
Low Nucleotide Diversity in Man   总被引:49,自引:0,他引:49       下载免费PDF全文
W. H. Li  L. A. Sadler 《Genetics》1991,129(2):513-523
The nucleotide diversity (pi) in humans is studied by using published cDNA and genomic sequences that have been carefully checked for sequencing accuracy. This measure of genetic variability is defined as the number of nucleotide differences per site between two randomly chosen sequences from a population. A total of more than 75,000 base pairs from 49 loci are compared. The DNA regions studied are the 5' and 3' untranslated regions and the amino acid coding regions. The coding regions are divided into nondegenerate sites (i.e., sites at which all possible changes are nonsynonymous), twofold degenerate sites (i.e., sites at each of which one of the three possible changes is synonymous) and fourfold degenerate sites (i.e., sites at which all three possible changes are synonymous). The pi values estimated are, respectively, 0.03 and 0.04% for the 5' and 3' UT regions, and 0.03, 0.06 and 0.11% for nondegenerate, twofold degenerate and fourfold degenerate sites. Since the highest pi value is only 0.11%, which is about one order of magnitude lower than those in Drosophila populations, the nucleotide diversity in humans is very low. The low diversity is probably due to a relatively small long-term effective population size rather than any severe bottleneck during human evolution.  相似文献   

9.
Payseur BA  Nachman MW 《Gene》2002,300(1-2):31-42
Theoretical and empirical work indicates that patterns of neutral polymorphism can be affected by linked, selected mutations. Under background selection, deleterious mutations removed from a population by purifying selection cause a reduction in linked neutral diversity. Under genetic hitchhiking, the rise in frequency and fixation of beneficial mutations also reduces the level of linked neutral polymorphism. Here we review the evidence that levels of neutral polymorphism in humans are affected by selection at linked sites. We then discuss four approaches for distinguishing between background selection and genetic hitchhiking based on (i) the relationship between polymorphism level and recombination rate for neutral loci with high mutation rates, (ii) relative levels of variation on the X chromosome and the autosomes, (iii) the frequency distribution of neutral polymorphisms, and (iv) population-specific patterns of genetic variation. Although the evidence for selection at linked sites in humans is clear, current methods and data do not allow us to clearly assess the relative importance of background selection and genetic hitchhiking in humans. These results contrast with those obtained for Drosophila, where the signals of positive selection are stronger.  相似文献   

10.
Natural selection can produce a correlation between local recombination rates and levels of neutral DNA polymorphism as a consequence of genetic hitchhiking and background selection. Theory suggests that selection at linked sites should affect patterns of neutral variation in partially selfing populations more dramatically than in outcrossing populations. However, empirical investigations of selection at linked sites have focused primarily on outcrossing species. To assess the potential role of selection as a determinant of neutral polymorphism in the context of partial self-fertilization, we conducted a multivariate analysis of single-nucleotide polymorphism (SNP) density throughout the genome of the nematode Caenorhabditis elegans. We based the analysis on a published SNP data set and partitioned the genome into windows to calculate SNP densities, recombination rates, and gene densities across all six chromosomes. Our analyses identify a strong, positive correlation between recombination rate and neutral polymorphism (as estimated by noncoding SNP density) across the genome of C. elegans. Furthermore, we find that levels of neutral polymorphism are lower in gene-dense regions than in gene-poor regions in some analyses. Analyses incorporating local estimates of divergence between C. elegans and C. briggsae indicate that a mutational explanation alone is unlikely to explain the observed patterns. Consequently, we interpret these findings as evidence that natural selection shapes genome-wide patterns of neutral polymorphism in C. elegans. Our study provides the first demonstration of such an effect in a partially selfing animal. Explicit models of genetic hitchhiking and background selection can each adequately describe the relationship between recombination rate and SNP density, but only when they incorporate selfing rate. Clarification of the relative roles of genetic hitchhiking and background selection in C. elegans awaits the development of specific theoretical predictions that account for partial self-fertilization and biased sex ratios.  相似文献   

11.
Wang HY  Tsai MP  Yu MJ  Lee SC 《Molecular ecology》1999,8(11):1879-1888
The genetic subdivision of the endemic minnow, Zacco pachycephalus, in 12 rivers of Taiwan was studied by allozyme electrophoresis. Among 26 loci surveyed, six were significantly differentiated among sites. Allozyme genotype frequencies within samples accord with Hardy-Weinberg expectations. A highly divergent genetic structure among sites (FST = 0.497) with low genetic variability within samples (H = 0.006-0.062, mean = 0.03) suggests that local populations originated from a small number of founders. UPGMA and Fitch trees derived from Nei's genetic distance and hierarchical analysis of FST values reveal that samples of Z. pachycephalus can be divided into northern, middle, and southern subgroups and that most genetic variation (87%) is distributed among rather than within groups. It is proposed that there were two isolated refugia during the most recent glacial period, and that populations of the southern group (Group I) originated from a southern refugium in Taiwan below the boundary of the Kaoping River, and other groups (Group II), including northern and middle subgroups, originated from a refugium located on the extinct land-bridge between Taiwan and mainland China. The postglacial division between northern and middle subgroups may be due to hydrological differences between these two regions.  相似文献   

12.
The relationship between cultural variation and biological variationamong natural populations has been the subject of both theoreticaland empirical study. Zonotrichia leucophrys pugetensis is oneof three subspecies of white-crowned sparrow known to form geographicalsong dialects. We investigated whether these dialects correspondto genetic differences among Z. l. pugetensis populations. Wecompared allele frequencies at four microsatellite loci in malesfrom 11 sites spanning six dialects over the subspecies' rangein Oregon and Washington. Cluster analysis and genotype assignmenttests indicated no tendency for sample sites within dialectareas to be genetically more similar than are sites from differentdialect areas. AMOVA tests revealed high within-site variationand low but significant cross-site and cross-dialect-area variation.Finally, genetic distance between sites was not correlated withdialect differences when the effect of geographic distance wascontrolled statistically. We compare our finding of low geneticdifferentiation among Z. l. pugetensis dialect populations toresults of previous studies on Z. l. nuttalli and Z. l. oriantha.Because genetic structuring appears weaker than cultural (songdialect) structure in this species, we discuss the behavioralmechanisms underlying dialect maintenance in the presence ofapparent gene flow.  相似文献   

13.
Reto Burri 《Molecular ecology》2017,26(15):3853-3856
Selection has a deep impact on the distribution of genetic diversity and population differentiation along the genome (the genomic landscapes of diversity and differentiation), reducing diversity and elevating differentiation not only at the sites it targets, but also at linked neutral sites. Fuelled by the high‐throughput sequencing revolution, these genomic footprints of selection have been extensively exploited over the past decade with the aim to identify genomic regions involved in adaptation and speciation. However, while this research has shown that the genomic landscapes of diversity and differentiation are usually highly heterogeneous, it has also led to the increasing realization that this heterogeneity may evolve under processes other than adaptation or speciation. In particular, instead of being an effect of selective sweeps or barriers to gene flow, accentuated differentiation can evolve by any process reducing genetic diversity locally within the genome (Charlesworth, 1998 ), including purifying selection at linked sites (background selection). In particular, in genomic regions where recombination is infrequent, accentuated differentiation can evolve as a by‐product of diversity reductions unrelated to adaptation or speciation (Cruickshank & Hahn, 2014 ; Nachman & Payseur, 2012 ; Noor & Bennett, 2009 ). In such genomic regions, linkage extends over physically larger genome stretches, and selection affects a particularly high number of linked neutral sites. Even though the effects of selection on linked neutral diversity (linked selection) within populations are well documented (Cutter & Payseur, 2013 ), recent observations of diversity and differentiation landscapes that are highly correlated even among independent lineages suggest that the effects of long‐term linked selection may have a deeper impact on the evolution of the genomic landscapes of diversity and differentiation than previously anticipated. The study on Saxicola stonechats by Van Doren et al. ( 2017 ) reported in the current issue of Molecular Ecology lines in with a rapidly expanding body of evidence in this direction. Correlations of genomic landscapes extending from within stonechats to comparisons with Ficedula flycatchers add to recent insights into the timescales across which the effects of linked selection persist. Absent and inverted correlations of genomic landscapes in comparisons involving an island taxon, on the other hand, provide important empirical clues about the role of demographic constraints in the evolution of the genomic landscapes of diversity and differentiation.  相似文献   

14.
BACKGROUND AND AIMS: Seagrasses are important facilitator species in shallow, soft-bottom marine environments worldwide and, in many places, are threatened by coastal development and eutrophication. One narrow-leaved species (Zostera marina) and one wide-leaved species, variously designated as Z. marina, Z. pacifica or Z. asiatica, are found off the California Channel Islands and adjacent California-Mexico coast. The aim of the present study was to confirm species identification genetically and to link patterns of genetic diversity, connectivity and hybridization among and within the populations with historical sea levels (Ice Age) or the contemporary environment. METHODS: Samples (n = 11-100) were collected from 28 sites off five California Channel Islands and six sites off the adjacent coast of southern California and Baja California, Mexico. DNA polymorphisms of the rDNA-ITS (internal transcribed spacer) cistron (nuclear), the matK intron (chloroplast) and nine microsatellite loci (nuclear) were examined in a population genetic and phylogeographic context. KEY RESULTS: All wide-leaved individuals were Z. pacifica, whereas narrow-leaved forms were Z. marina. Microsatellite genotypes were consistent with hybridization between the two species in three populations. The present distribution of Z. pacifica follows a glacial age land mass rather than present oceanographic regimes, but no link was observed between the present distribution of Z. marina and past or present environments. Island populations of Z. marina often were clonal and characterized by low genotypic diversity compared with populations along the Baja California coast. The high level of clonal connectivity around Santa Catalina Island indicated the importance of dispersal and subsequent re-establishment of vegetative fragments. CONCLUSIONS: The pristine environmental conditions of offshore islands do not guarantee maximum genetic diversity. Future restoration and transplantation efforts of seagrasses must recognize cryptic species and consider the degree of both genetic and genotypic variation in candidate donor populations.  相似文献   

15.
The kinetics of fusion of Sendai virus (Z strain) with the human promyelocytic leukemia cell line HL-60, and the human T lymphocytic leukemia cell line CEM was investigated. Fusion was monitored by fluorescence dequenching of octadecylrhodamine (R-18) incorporated in the viral membrane. For one virus isolate (Z/G), the overall rate of fusion (at 37 degrees C) increased as the pH was lowered, reaching a maximum at about pH 5, the lowest pH tested. For another isolate (Z/SF) the rate and extent of fusion were lower at pH 5 than at neutral pH. Lowering the pH from neutral to 5 after several minutes of incubation of either isolate with HL-60 cells resulted in an enhanced rate of fluorescence dequenching. Nevertheless, experiments utilizing NH4Cl indicated that fusion of the virus with cells was not enhanced by the mildly acidic pH of the endosome lumen. Analysis of the kinetics of fusion by means of a mass action model resulted in good simulation and predictions for the time-course of fusion. For the isolate which showed maximal fusogenic activity at pH 5, the rate constant of fusion (approx. 0.1 s-1) at neutral pH was in the range found previously for virus-liposome fusion, whereas the rate constant of adhesion was close to the upper limit for diffusion-controlled processes (1.4.10(10) M-1 s-1). However, for the other isolate (Z/SF) the rate constant of fusion at neutral pH was very small (less than 0.01 s-1), whereas the rate constant of adhesion was larger (greater than or equal to 2.10(10) M-1 s-1). Lowering the temperature decreased the fusion rate. Experiments involving competition with excess unlabeled virions indicated that not all binding sites for Sendai virus on HL-60 cells are fusion sites. The virus fusion activity towards HL-60 cells at neutral pH was not altered significantly by pre-incubation of the virus at pH 5 or 9, in contrast to earlier observations with liposomes and erythrocyte ghosts, or results based on erythrocyte hemolysis or cell-cell fusion.  相似文献   

16.
Human genetic variation is the incarnation of diverse evolutionary history, which reflects both selectively advantageous and selectively neutral change. In this study, we catalogue structural and functional features of proteins that restrain genetic variation leading to single amino acid substitutions. Our variation dataset is divided into three categories: i) Mendelian disease-related variants, ii) neutral polymorphisms and iii) cancer somatic mutations. We characterize structural environments of the amino acid variants by the following properties: i) side-chain solvent accessibility, ii) main-chain secondary structure, and iii) hydrogen bonds from a side chain to a main chain or other side chains. To address functional restraints, amino acid substitutions in proteins are examined to see whether they are located at functionally important sites involved in protein-protein interactions, protein-ligand interactions or catalytic activity of enzymes. We also measure the likelihood of amino acid substitutions and the degree of residue conservation where variants occur. We show that various types of variants are under different degrees of structural and functional restraints, which affect their occurrence in human proteome.  相似文献   

17.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

18.
Tiffin P  Hacker R  Gaut BS 《Genetics》2004,168(1):425-434
Two patterns of plant defense gene evolution are emerging from molecular population genetic surveys. One is that specialist defenses experience stronger selection than generalist defenses. The second is that specialist defenses are more likely to be subject to balancing selection, i.e., evolve in a manner consistent with balanced-polymorphism or trench-warfare models of host-parasite coevolution. Because most of the data of specialist defenses come from Arabidopsis thaliana, we examined the genetic diversity and evolutionary history of three defense genes in two outcrossing species, the autotetraploid Zea perennis and its most closely related extant relative the diploid Z. diploperennis. Intraspecific diversity at two generalist defenses, the protease inhibitors wip1 and mpi, were consistent with a neutral model. Like previously studied genes in these taxa, wip1 and mpi harbored similar levels of diversity in Z. diploperennis and Z. perennis. In contrast, the specialist defense hm2 showed strong although distinctly different departures from a neutral model in the two species. Z. diploperennis appears to have experienced a strong and recent selective sweep. Using a rejection-sampling coalescent method, we estimate the strength of selection on Z. diploperennis hm2 to be approximately 3.0%, which is approximately equal to the strength of selection on tb1 during maize domestication. Z. perennis hm2 harbors three highly diverged alleles, two of which are found at high frequency. The distinctly different patterns of diversity may be due to differences in the phase of host-parasite coevolutionary cycles, although higher hm2 diversity in Z. perennis may also reflect reduced efficacy of selection in the autotetraploid relative to its diploid relative.  相似文献   

19.
To quantify the genetic correlations between total body fat mass (TBFM) and femoral neck geometric parameters (FNGPs) and, if pos- sible, to detect the specific genomic regions shared by them, bivariate genetic analysis and bivariate whole-genome linkage scan were carried out in a large Caucasian population. All the phenotypes studied were significantly controlled by genetic factors (P 〈 0.001) with the heritabilities ranging from 0.45 to 0.68. Significantly genetic correlations were found between TBFM and CSA (cross-section area), W (sub-periosteal diameter), Z (section modulus) and CT (cortical thickness) except between TBFM and BR (buckling ratio). The peak bivariate LOD scores were 3.23 (20q12), 2.47 (20p11), 3.19 (6q27), 1.68 (20p12), and 2.47 (7q11) for the five pairs of TBFM and BR, CSA, CT, W, and Z in the entire sample, respectively. Gender-specific bivariate linkage evidences were also found for the five pairs. 6p25 had complete pleiotropic effects on the variations of TBFM & Z in the female sub-population, and 6q27 and 17q11 had coincident link- ages for TBFM & CSA and TBFM & Z in the entire population. We identified moderate genetic correlations and several shared genomic regions between TBFM and FNGPs in a large Caucasian population.  相似文献   

20.
Genetic ablation of connexin37 (Cx37) or connexin43 (Cx43), the two gap junction proteins expressed by mouse ovarian granulosa cells, has been shown to result in impaired follicle development. We used patch-clamp techniques to evaluate quantitatively the contribution of these connexins to gap junctional intercellular communication (GJIC) among granulosa cells. The coupling conductance derived from a voltage step-induced capacitive current transient was used as a measure of GJIC in cultured granulosa cells. Using this method, we determined that the conductance of wild-type (84.1 ± 28.6 nS; n = 6) and Cx37-deficient granulosa cells (83.7 ± 6.4 nS; n = 11) does not differ significantly (P = 0.35), suggesting a limited contribution, if any, of Cx37 to granulosa cell coupling. In contrast, the conductance between granulosa cells of Cx43-deficient mice (2.6 ± 0.8 nS; n = 5) was not significantly different from that of single, isolated wild-type granulosa cells (2.5 ± 0.7 nS, n = 5; P = 0.83), indicating that Cx43-deficient granulosa cells were not electrically coupled. A direct measurement of transjunctional conductance between isolated granulosa cell pairs using a dual patch-clamp technique confirmed this conclusion. Interestingly, a partial rescue of folliculogenesis was observed when the Cx43-null mutation in C57BL/6 mice was crossed into the CD1 strain, and capacitive current measurement demonstrated that this rescue was not due to reestablishment of GJIC. These results demonstrate that folliculogenesis is impaired in the absence of GJIC between granulosa cells, but they also indicate that the severity is dependent on genetic background, a phenomenon that cannot be attributed to the expression of additional connexins. ovarian follicle; oogenesis; connexin37; intercellular communication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号