首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the dynamic fluorescence quenching method, it was shown that very low density (VLDL) apoproteins (apo B, E and C) tryptophanyls exhibit a lower accessibility towards water-soluble quenchers as compared to apo B LDL chromophores. The efficiency of proteolytic degradation by trypsin of VLDL-associated apo E and apo C was much lower than that of apo B. These results may be due to the cluster arrangement of amphipatic apo E and apo C on the VLDL surface and/or to their partial shielding by apo B. Treatment of VLDL particles with sub-lytic concentrations of the detergent, Tween-20, did not change the relaxation characteristics of amphipatic apoprotein tryptophanyl microenvironment, but resulted in a reversible structural transition registered by a "red" shift of the emission spectrum maximum as well as by change of the iodine quenching pattern. The detergent-induced increase of the VLDL tryptophanyl accessibility to acrylamide and the decrease of the quenching constant at the partial and complete particle solubilization were related to a change of the apo B molecular package. Treatment of VLDL with Tween-20 or cow milk lipoprotein lipase resulted in the appearance of tryptophanyl population that was not involved in the resonance energy transfer to the lipid phase-localized fluorescent probe pyrene, which is indicative of the protein dissociation. Treatment of VLDL particles with sub-lytic concentrations of Tween-20 revealed a lower (compared to apo C) relative affinity of apo E for the VLDL lipid surface. Inhibition of the lipoprotein lipase activity by apoprotein C-III was found to be non-competitive. It was concluded that lipolysis is a self-regulatory process which involves changes in the effector apoprotein concentration on the surface of triglyceride-rich particles.  相似文献   

2.
Human plasma very low density apolipoproteins C-I, C-II and C-III were recombined in vitro with triolein. The lipid-protein complexes were analyzed by ultracentrifugal flotation, agarose gel electrophoresis, immunoelectrophoresis and electron microscopy. Maximal protein/triolein ratios for apoprotein C-I, C-II, C-III-1 and C-III-2 were 50, 45, 95 and 55 microgram/mg, respectively. Electron micrographs exhibited spherical particles with diameters ranging from 200--2000 A comparable to native VLDL and chylomicrons. On agarose gel electrophoresis these complexes showed alpha-mobility. Kinetics of triolein hydrolysis by purified human plasma lipoprotein lipase were studied using these artificial lipoprotein substrates with different apoprotein/triolein ratios. The reaction followed the Michaelis-Menten equation. With increasing amounts of apo C-II, the apparent Km decreased from 0.60 to 0.11 mM. Incubation of the substrate with either rabbit anti-apo C-II gamma-globulins or digestion with trypsin prior to hydrolysis reversed this lowering effect on apparent Km. V was not altered significantly. Increasing amounts of apo C-I, apo C-III-1 or apo C-III-2 without apo C-II caused inhibition of triolein hydrolysis. In the presence of apo C-II, however, similar kinetic parameters were obtained as described above.  相似文献   

3.
The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The in vitro effect of apolipoprotein C-II (apo C-II) on the apolipoprotein C-III (apo C-III) induced activation of bovine milk lipoprotein lipase (LPL) was studied in vitro using a synthetic substrate. Apo C-III effectively inhibited, in a dose-dependent manner, the activation of lipoprotein lipase induced by apo C-II. A 3-fold molar apo C-III excess decreased the lipoprotein lipase activity by 25%. Thrombin cleavage of apo C-III produced two fragments: only fragment 41-79 retained the inhibitory activity and was equipotent to native apo C-III1 on a molar basis. Neither displacement of apo C-II from the substrate, as determined using 125I-labeled apo C-II, nor the charge carried by sialic residues of apo C-III, as demonstrated in experiments performed after neuraminidase treatment, accounted for this effect. I speculate that apo C-III may act by inhibiting the apo C-II-LPL interaction.  相似文献   

5.
Recently developed molecular probes for human apolipoprotein (apo) genes have been used to study the specificity of human tissue expression of the apo A-I, apo C-II, apo C-III, and apo E genes. We have found that apo E mRNA was present in all tissues examined. On the basis of total RNA concentration the relative abundance of apo E mRNA expressed as a percentage of the liver value is as follows: adrenal gland and macrophages, 74-100%; gonads and kidney, 12-15%; spleen, brain, thymus, ovaries, intestine, and pancreas, 3-9%; heart, 1.5%; stomach, striated muscle, and lung, less than 1%. The relative concentration of apo E mRNA in cultures of human peripheral blood monocyte-macrophages increases dramatically as a function of time in culture, and after 5 days, it compares to that of liver. The human tissues shown to synthesize apo E mRNA were also examined for their ability to synthesize apo A-I, apo C-II, and apo C-III mRNA. The relative abundance of apo A-I, apo C-III, and apo C-II mRNA expressed as a percentage of the liver value is as follows: apo A-I, intestine, 50%; apo A-I, pancreas and gonads, 12%; apo A-I, kidney, 4%; apo A-I, adrenal, 2.5%; apo A-I, ovaries and heart, 1%; apo A-I, stomach and thymus, less than 1%; apo C-III, intestine, 62%; apo C-III, pancreas, 7%; apo C-II, intestine, 3%; apo C-II, pancreas, less than 1%. The knowledge of tissue specificities in the synthesis of apolipoproteins is important for our understanding of the regulation of apolipoproteins and lipoprotein metabolism.  相似文献   

6.
1. By means of 2-dimensional gradient-gel electrophoresis, the very low density lipoproteins (VLDL) apoproteins E and C profiles from human and swine plasma were studied. 2. The molecular properties (isoelectric point and molecular weight) of the VLDL apoproteins and their isoforms were determined and showed many similarities between species. 3. It also appears evident that a previously unrecognized apoprotein (C-III) and several associated isoforms may exist in swine; however, it's mobility on 2-dimensional gradient gels is very similar to Apo C-II.  相似文献   

7.
1. Sephadex fraction V, obtained from human serum high density lipoprotein apoprotein (HDL apoprotein) of normal subjects and of patients with abetalipoproteinemia, was resolved by DEAE-cellulose ion exchange column chromatography into several fractions which were defined in terms of amino acid composition, NH2- and COOH-terminsls, sialic acid content, immunologic and electrophoretic properties, and in vitro activation of purified lipoprotein lipase from rat adipose tissue. 2. Fraction V of HDL apoprotein of both normal and abetalipoproteinemic subjects was found to contain polypeptides corresponding to apolipoproteins C-I, C-II, C-III-1, and C-III-2, which had been described previously in very low-density lipoproteins (VLDL). The content of apo C-III-1 in abetalipoproteinemia-HDL was very low, whereas the percentage, by weight, of apo C-I was about twice as high as that in the normal subjects studied. Furthermore, both normal and abetalipoproteinemia-HDL apoprotein contained a previously unreported peptide which had a molecular weight of about 7 000 and electrophoretic, chemical, and immunological properties distinct from those of the known C apolipoproteins. Of all of the peptides comprising fraction V, only apo C-II activated a purified preparation of rat adipose tissue lipoprotein lipase. This was the case for both normal and abetalipoproteinemic subjects.  相似文献   

8.
The apoproteins (apo) C-I, C-II, and C-III are low molecular weight amphiphilic proteins that are associated with the lipid surface of the plasma chylomicron, very low density lipoprotein (VLDL), and high-density lipoprotein (HDL) subfractions. Purified apoC-I spontaneously reassociates with VLDL, HDL, and single-bilayer vesicles (SBV) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. ApoC-I also transfers reversibly from VLDL to HDL and from VLDL and HDL to SBV. The kinetics of association of the individual apoC proteins with SBV are second order overall and first order with respect to lipid and protein concentrations. At 37 degrees C, the rates of association were 2.5 x 10(10), 4.0 x 10(10) and 3.8 x 10(10) M-1 s-1 for apoC-I, apoC-II, and apoC-III, respectively. Arrhenius plots of association rate vs temperature were linear and yielded activation energies of 11.0 (apoC-I), 9.0 (apoC-II), and 10.6 kcal/mol (apoC-III). The kinetics of vesicle to vesicle apoprotein transfer are biexponential for intermembrane transfer, indicating two concurrent transfer processes. Rate constants at 37 degrees C for the fast component of dissociation were 11.7, 9.5, and 9.9 s-1, while rate constants for the slow component were 1.3, 0.6, and 0.9 s-1 for apoC-I, apoC-II, and apoC-III, respectively. The dissociation constants, Kd, of apoC-I, apoC-II, and apoC-III bound to the surface monolayer of phospholipid-coated latex beads were 0.5, 1.4, and 0.5 microM, respectively. These studies show that the apoC proteins are in dynamic equilibrium among phospholipid surfaces on a time scale that is rapid compared to lipolysis, lipid transfer, and lipoprotein turnover.  相似文献   

9.
The low molecular weight (LMW) apolipoprotein of apo C plays an important role in the metabolism of triglyceride-rich lipoproteins. This study aimed at a characterization of the major LMW apolipoproteins from normal quail strain, and also from LAP (hyperlipidemia atherosclerosis-prone) strain to identify its genetic disorder. The major LMW apoprotein cDNA clone from normal quail comprised of approximately 500 bp, and encoded polypeptide of 78 amino acid residues containing 57 amino acids as a mature apolipoprotein. Although the quail LMW apoprotein showed a low homology to either apo C-I, C-II, or C-III of other animals, it retained a well-developed amphipathic alpha-helix structure. There was no difference in the deduced primary structure of the quail LMW apoprotein between LAP and normal strain. An analysis of the mRNA expression showed that the quail LMW apoprotein was only expressed in the liver of both LAP and normal Japanese quail. No difference was noted in the hepatic expression of the quail LMW apoprotein mRNA between normal and LAP strains with neither normal nor atherogenic dietary conditions. The structure and expression of the major LMW apoprotein thus had no relevance to higher susceptibility of LAP strain to the experimental atherosclerosis.  相似文献   

10.
We have developed a technique for isolating apoprotein C-III by immunoaffinity chromatography, allowing the measurement of its specific radioactivity in lipoprotein fractions from small plasma samples. IgG specific for apoC-III was purified from goat antisera and bound to Sepharose. One ml of this gel (5 mg of IgG) bound 80-90 micrograms of apoC-III. The specific activity of apoC-III was determined by application of delipidated very low density lipoproteins to 1-ml columns and analysis of the protein eluted at pH 2.5 for mass and radio-activity. The coefficient fo variation for apoC-III specific activity determination from 125I-labeled VLDL was 4.3%. Minimal contamination of the eluates by apoproteins B, E, and C-II was confirmed by radioimmunoassay (0.3-1.2%). Following the injection of autologous 125I-labeled VLDL, specific activity decay curves for VLDL apoC-III were biexponential, with the clearance of apoC-III being slower in hypertriglyceridemic subjects. These affinity columns can be used repeatedly and yield reproducible results. This technique should be useful for simultaneous studies of the turnover of several apoproteins in the same individual following a single injection of labeled autologous lipoprotein.  相似文献   

11.
Previous work has shown that nascent hepatic very-low-density lipoproteins (VLDL) in the rat are biosynthesized without the obligatory co-factor (apolipoprotein C-II) for lipoprotein lipase-mediated hydrolysis of their core triacylglycerols. Upon secretion, apolipoproteins C-II and C-III are rapidly transferred to the particles from high-density lipoprotein (HDL) within the space of Disse and upon the entry into the plasma. Here we extend those studies to include observations on the apolipoprotein E content and lipid composition of nascent hepatic VLDL before and after exposure to plasma components. We have elected to use hepatic secretory vesicle VLDL rather than liver perfusate VLDL as truly representative of the nascent lipoproteins. Nascent VLDL from fed rats has an apolipoprotein B/E ratio of 6.6 ± 0.5, whereas that from fasted animals is 13.9 ± 2.3. Incubation of nascent VLDL from fed and fasted rats with d > 1.063 g/ml rat serum, HDL or the d > 1.21 g/ml fraction resulted in a mass transfer of apoliproprotein E to the VLDL such that the apolipoprotein B/E ratio decreased to at least that of serum VLDL (3.4 ± 0.3). The d > 1.21 g/ml fraction appeared to contain a species of apolipoprotein E which most actively transferred to VLDL. The acquisition of apolipoprotein E by nascent secretory vesicle VLDL was attended by a loss of phospholipids, particularly the C40 (stearoylarachidonyl) molecular species, and an increase in the cholesterol-to-phospholipid ratio from 0.11 ± 0.01 to 0.18 ± 0.03. No evidence was obtained to suggest a simultaneous acquisition of cholesteryl esters upon incubation of nascent VLDL with VLDL-free serum. We conclude that nascent hepatic VLDL is modified after secretion by acquisition of apolipoproteins C-II, C-III and E with a concomitant loss of phospholipids.  相似文献   

12.
The low molecular weight proteins of rat apo HDL and apo VLDL have been isolated and analyzed by the technique of isoelectric focusing. Sephadex fractions from apo HDL (HS-3) and apo VLDL (VS-3) that contain these proteins reveal three major bands with apparent isoelectric points of pH 4.50, 4.67, and 4.74, as well as three minor bands at pH 4.43, 4.57, and 4.61. In addition, apo HDL has a major band at pI of 4.83. DEAE-Cellulose chromatography was used to prepare purified fractions of these components that were characterized by N-terminal analyses and molecular weight determinantions by SDS gel electrophoresis. The major low molecular weight components of apo HDL were focused on a slab gel and the bands were identified as A-II (pI 4.83), C-II (pI 4.74), C-III-0 (pI 4.67), and C-III-3 (pI 4.50). Neuraminidase treatment of apo HDL, followed by isoelectric focusing, suggested that the other bands, which have not previously been reported, may be additional forms of the C-III protein, differing only in their content of sialic acid.  相似文献   

13.
Livers from normal fed or fasted (24h) rats were perfused in vitro to determine whether fatty acid affects the biosynthesis of very low density lipoprotein (VLDL) apoprotein. Oleate stimulated VLDL triacylglycerol output and increased incorporation of L-[4,5-3H]leucine into VLDL apoprotein in both the fed and fasted groups. The increased incorporation of [3H]leucine was mainly into VLDL-apoprotein E. The total mass of VLDL apoprotein secreted was also stimulated by oleate proportionately. These data suggest that fatty acids may stimulate hepatic synthesis and/or secretion of the VLDL apoproteins and that apo E, may be required for the formation and secretion of triacyl-glycerol in the VLDL.  相似文献   

14.
Using fast protein chromatofocusing, a high-efficiency column chromatography method with a self-generated pH gradient and focusing effects, soluble human very-low-density lipoprotein (VLDL) apolipoproteins were fractionated between pH 6.3 and 4.0. In the presence of 6 mol/l urea and with a flow rate of 1 ml/min, one run (up to 10 mg of protein) took 30 min. VLDL apolipoproteins were separated in seven peaks. As revealed by SDS-polyacrylamide gel electrophoresis, isoelectric focusing and double-immunodiffusion against mono-specific antisera, fractions corresponded to the following proteins: apolipoprotein C-I, albumin, apolipoproteins A-I, E, C-II plus C-III0, C-III1 and C-III2, respectively. Apolipoproteins were eluted in sharp, well-resolved peaks. The recovery of proteins was 78% of the starting material. With fast protein chromatofocusing, an efficient isolation of single apolipoproteins is possible from small amounts of VLDL apolipoprotein preparations. This technique is superior to the commonly used, time-consuming methods for apolipoprotein isolation.  相似文献   

15.
Apolipoprotein (apo) E and apoC-III concentrations in VLDL and LDL are associated with coronary heart disease. We studied the relationship between apoE and apoC-III and the abnormal concentrations and distribution of apoB lipoproteins in 10 hypercholesterolemic and 13 hypertriglyceridemic patients compared with 12 normolipidemic subjects (mean age, 45 years). Sixteen distinct types of apoB lipoprotein particles were separated by first using anti-apoE and anti-apoC-III immunoaffinity chromatography in sequence and then ultracentrifugation [light VLDL, dense VLDL, IDL, and LDL, with apoE with or without apoC-III (E(+)C-III(+), E(+)C-III(-)) or without apoE with or without apoC-III (E(-)C-III(+), E(-)C-III(-))]. The concentrations of VLDL particles with apoC-III (E(+)C-III(+), E(-)C-III(+)) were increased in the hypertriglyceridemic group compared with the hypercholesterolemic and normolipidemic groups. These particles were the most triglyceride rich of the particle types, and their triglyceride content was twice as high in hypertriglyceridemics compared with the other two groups. Hypertriglyceridemics had a similar concentration of total E(-)C-III(-) particles compared with normolipidemics, but the E(-)C-III(-) particles were distributed more to VLDL and IDL than to LDL. Hypercholesterolemics, in contrast, were distinguished from the normolipidemic group by 2-fold higher concentrations of apoB lipoproteins without apoE or apoC-III (E(-)C-III(-)), mainly LDL, which had high cholesterol content. Nonetheless, both normolipidemics and hypercholesterolemics had apoC-III-containing VLDL, which comprised 68% and 43% of their total VLDL particles. E(+)C-III(-) particles were a minor type, comprising <10% of particles in all lipoproteins and patient groups. Therefore, VLDL particles with apoC-III may play a central role in identifying the high risk of coronary heart disease in hypertriglyceridemia, but their substantial prevalence in normolipidemics may be of clinical significance as well.  相似文献   

16.
Changes in whole plasma and lipoprotien apoprotein concentrations were determined after a single injection of Triton WR 1339 into rats. Concentrations of apoproteins A-I (an activator of lecithin:cholesterol acyl transferase), arginine-rich apoprotein (ARP), and B apoprotein were measured by electroimmunoassay. The content of C-II apoprotein (an activaor of lipoprotein lipase) was estimated by the ability of plasma and lipoprotein fractions to promote hydrolysis of triglyceride in the presence of cow's milk lipase and also by isoelectric focusing on polyacrylamide gels. Apoproteins C-II and A-I were rapidly removed from high density lipoprotein (HDL) after Triton treatment and were recovered in the d 1.21 g/ml infranate fraction. A-I was then totally cleared from the plasma within 10--20 hr after injection. Arginine-rich apoprotein was removed from HDL and also partially cleared from the plasma. The rise in very low density lipoprotein (vldl) apoprotein that followed the removal of apoproteins from HDL was mostly antributed to the B apoprotein, although corresponding smaller increases were observed in VLDL ARP and C apoproteins. The triglyceride:cholesterol, triglyceride:protein, and B:C apoprotein ratios of VLDL more closely resembled nascent rather than plasma VLDL 10 hr after Triton injection. These studies suggest that the detergent may achieve its hyperlipidemic effct by disrupting HDL and thus removing the A-I and C-II proteins from a normal activating environment compirsing VLDL, HDL, and the enzymes. The possible involvement of intact HDL in VLDL catabolism is discussed in relation to other recent reports which also suggest that abnormalities of the VLDL-LDL system may be due to the absence of normal HDL.  相似文献   

17.
The effects of oleic acid on the biosynthesis and secretion of VLDL (very-low-density-lipoprotein) apoproteins and lipids were investigated in isolated perfused rat liver. Protein synthesis was measured by the incorporation of L-[4,5-3H]leucine into the VLDL apoproteins (d less than 1.006) and into apolipoproteins of the whole perfusate (d less than 1.21). Oleate did not affect incorporation of [3H]leucine into total-perfusate or hepatic protein. The infusion of oleate, however, increased the mass and radioactivity of the VLDL apoprotein in proportion to the concentration of oleate infused. Uptake of oleate was similar with livers from fed or fasted animals. Fasting itself (24 h) decreased the net secretion and incorporation of [3H]leucine into total VLDL apoprotein and decreased the output of VLDL protein by the liver. A linear relationship existed between the output of VLDL triacylglycerol (mumol/h per g of liver) and secretion and/or synthesis of VLDL protein. Net output of VLDL cholesterol and phospholipid also increased linearly with VLDL-triacylglycerol output. Oleate stimulated incorporation of [3H]leucine into VLDL apo (apolipoprotein) E and apo C by livers from fed animals, and into VLDL apo Bh, B1, E and C by livers from fasted rats. The incorporation of [3H]leucine into individual apolipoproteins of the total perfusate lipoprotein (d less than 1.210 ultracentrifugal fraction) was not changed significantly by oleate during perfusion of livers from fed rats, suggesting that the synthesis de novo of each apolipoprotein was not stimulated by oleate. This is in contrast with that observed with livers from fasted rats, in which the synthesis of the total-perfusate lipoprotein (d less than 1.210 fraction) apo B, E and C was apparently stimulated by oleate. The observations with livers from fed rats suggest redistribution of radioactive apolipoproteins to the VLDL during or after the process of secretion, rather than an increase of apoprotein synthesis de novo. It appears, however, that the biosynthesis of apo B1, Bh, E and C was stimulated by oleic acid in livers from fasted rats. Since the incorporations of [3H]leucine into the VLDL and total-perfusate apolipoproteins were increased in fasted-rat liver when the fatty acid was infused, part of the apparent stimulated synthesis of the VLDL apoprotein may be in response to the increased formation and secretion of VLDL lipid.  相似文献   

18.
The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins were studied. The injection of each apoprotein underneath a monolayer of egg phosphatidyl[14C]choline at 20 mN/m caused an increase in surface pressure to approximately 30 mN/m. With apolipoprotein C-II and apolipoprotein C-III there was a decrease in surface radioactivity indicating that the apoproteins were removing phospholipid from the interface; the removal of phospholipid was specific for apolipoprotein C-II and apolipoprotein C-III. Although there was a removal of phospholipid from the monolayer, the surface pressure remained constant and was due to the accumulation of apoprotein at the interface. The rate of surface radioactivity decrease was a function of protein concentration, required lipid in a fluid state and, of the lipids tested, was specific for phosphatidylcholine. Cholesterol and phosphatidylinositol were not removed from the interface. The addition of 33 mol% cholesterol to the phosphatidylcholine monolayer did not affect the removal of phospholipid by apolipoprotein C-III.The addition of phospholipid liposomes to the subphase greatly facilitated the apolipoprotein C-II-mediated removal of phospholipid from the interface.  相似文献   

19.
The fate and mechanism of removal of apolipoproteins and lipids of human very-low-density lipoproteins were determined in the perfused rat heart. Approx. 50% of the VLDL triacylglycerol was hydrolyzed during a 2 h perfusion. Phospholipid phosphorus, apolipoproteins C-II, C-III and E were quantitatively recovered in the medium. However, there was a loss of unesterified (17 +/- 6%) and esterified (19 +/- 8%) cholesterol from the perfusion medium. Apolipoprotein B was retained by the heart, as determined by the loss of immunoassayable apolipoprotein B (30 +/- 5%) or the uptake of 125I-labelled apolipoprotein of VLDL (9 +/- 2%) from the perfusion medium. The discrepancy in the two methods for estimating apolipoprotein removal was shown to be due to the modification of apolipoprotein B-containing lipoproteins, which was such that they were no longer precipitated with antibodies to apolipoprotein B. The labelled apolipoprotein B, retained by the heart, could be partially released by perfusion of the heart with buffer containing heparin (14 +/- 2%) or trypsin (50 +/- 2%). Labelled apolipoprotein uptake by the heart was reduced by 90% when lipoprotein lipase was first released by heparin or when VLDL was treated with 1,2-cyclohexanedione to modify arginine residues of apolipoproteins. Very little extensive degradation of the apoprotein to low molecular weight material occurred during the 2 h perfusion, since 95% of the tissue label was precipitated by trichloroacetic acid. It is concluded that there is retention of apolipoprotein B, cholesteryl ester and cholesterol by the perfused heart during catabolism of VLDL. The data are consistent with the concept that the retention of apolipoprotein B requires membrane-bound lipoprotein lipase or an interaction with the cell surfaces that is modified by heparin. The overall process also involves arginine residues of apolipoproteins. At least 50% of the labelled apolipoprotein retained in the tissue is associated with lipoprotein lipase and other cell surface sites, while the remainder may be taken up by the cells.  相似文献   

20.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号