首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Many field studies have examined how site fertility, soil differences and site history influence the diversity of a plant community. However, only a few studies have examined how the identity of the dominant species influences the diversity in grasslands. Plant species differ widely in phenology, growth form and resource uses; thus, communities dominated by different species are also likely to strongly differ in the environment that they create and in which the subdominant species exist. We examined the correlation between the four most dominant species and community diversity in 2100 plots, located in 21 abandoned agricultural fields in central Minnesota over a 23‐year period. The four most common species were two non‐native C3 cool season species, Poa pratensis and Agropyron repens, and two native C4 warm season species, Schizachyrium scoparium and Andropogon gerardii. We found that the differences in the dominants explained up to 27% of the community diversity. Thus, the identity of the dominant species can have a strong influence on community diversity and studies examining factors that influence plant community diversity need to incorporate the effect of the dominants. Secondly, we found that the non‐native C3 grass dominated communities had lower overall and lower native species richness relative to the native C4 grass dominated communities. Therefore, a shift in dominants from C4 to C3 may lead to a large community diversity decline. We found that Poa pratensis, the most abundant non‐native C3 grass increased in abundance over the 23 years; thus, the negative influence of non‐natives on the community diversity is not decreasing over time and active management is required to restore native grassland plant communities.  相似文献   

2.
The size of the local species pool (i.e., species surrounding a community capable of dispersal into that community) and other dispersal limitations strongly influence native plant community composition. However, the role that the local species pool plays in determining the invasibility of communities by exotic plants remains to be evaluated. We hypothesized that the richness and abundance of exotic species would be greater in C4‐dominated grassland communities if the local species pool included a larger proportion of exotic species. We also predicted that an increase in the exotic species pool would increase the invasibility of sites thought to be resistant to invasion (annually burned grassland). To test these hypotheses, study plots were established within two long‐term (>20 yr) fire experiments at a tallgrass prairie preserve in NE Kansas (USA). Study plots were surrounded by either a small pool of exotic species (small species pool (SSP) plots; six species) or a larger exotic species pool (large species pool (LSP) plots; 18 species). We found that richness and absolute cover of exotic species was significantly (P<0.001) lower (~70 and 90%, respectively) in annually burned compared to unburned plots, regardless of the size of the exotic species pool. As predicted, exotic species richness was higher (P<0.001) for LSP plots (3.9 per 250 m2) than for SSP plots (0.7 per 250 m2); however, absolute cover was unaffected by the size of the exotic species pool. In the absence of fire, plots with a LSP had four times as many exotic species than SSP plots. An increase in the local exotic species pool also increased the invasibility of annually burned grassland. Indeed, richness of exotic plant species in annually burned LSP plots did not differ from unburned plots with a SSP, indicating that a larger pool of exotic species countered the negative effects of fire. These findings have important implications for predicting how the invasion of plant communities may respond to human‐induced global changes, such as habitat fragmentation. Community characteristics or factors such as frequent fires in grasslands may impart resistance to invasions by exotic species in large, intact ecosystems. However, when a large pool of exotic species is present, frequent fire may not be sufficient to limit the invasions of exotic plants in fragmented landscapes.  相似文献   

3.
The impact of invasion on diversity varies widely and remains elusive. Despite the considerable attempts to understand mechanisms of biological invasion, it is largely unknown whether some communities’ characteristics promote biological invasion, or whether some inherent characteristics of invaders enable them to invade other communities. Our aims were to assess the impact of one of the massive plant invaders of Scandinavia on vascular plant species diversity, disentangle attributes of invasible and noninvasible communities, and evaluate the relationship between invasibility and genetic diversity of a dominant invader. We studied 56 pairs of Heracleum persicum Desf. ex Fisch.‐invaded and noninvaded plots from 12 locations in northern Norway. There was lower native cover, evenness, taxonomic diversity, native biomass, and species richness in the invaded plots than in the noninvaded plots. The invaded plots had nearly two native species fewer than the noninvaded plots on average. Within the invaded plots, cover of H. persicum had a strong negative effect on the native cover, evenness, and native biomass, and a positive association with the height of the native plants. Plant communities containing only native species appeared more invasible than those that included exotic species, particularly H. persicum. Genetic diversity of H. persicum was positively correlated with invasibility but not with community diversity. The invasion of a plant community by H. persicum exerts consistent negative pressure on vascular plant diversity. The lack of positive correlation between impacts and genetic diversity of H. persicum indicates that even a small founder population may cause high impact. We highlight community stability or saturation as an important determinant of invasibility. While the invasion by H. persicum may decrease susceptibility of a plant community to further invasion, it severely reduces the abundance of native species and makes them more vulnerable to competitive exclusion.  相似文献   

4.
Dominance not richness determines invasibility of tallgrass prairie   总被引:9,自引:0,他引:9  
Many recent studies suggest that more diverse communities are more resistant to invasion. Community characteristics that most strongly influence invasion are uncertain, however, due to covariation of diversity with competition and crowding. We examined separately the effects of species richness and dominance on invasion by an exotic legume, Melilotus officinalis , in intact, native Kansas grassland. We manipulated dominance of C4 grasses by reducing their abundance (i.e. ramet densities) by ∼25 and 50%. In addition, richness was reduced by removing species that were mainly rare and uncommon as might be expected with environmental changes such as drought and fragmentation. In both years of the study (2001–2002), invasibility, measured as peak establishment of Melilotus , was not affected by a 3-fold reduction in species richness, nor was there an interaction between loss of species and reduced dominance on invasion. In contrast, reductions in abundance of the dominants significantly reduced invasibility of the grassland plots in both years. Because the abundance of dominants was highly correlated with measures of competition (i.e. ratio of dominant biomass to total biomass) and crowding (total stem densities), this pattern was opposite to that expected if competition were indeed limiting invasion. Rather, invasion appeared to be facilitated by the dominant species, most likely because reduced dominance increased environmental stress. Our results suggest that dominance is the key community characteristic determining invasibility, because highly competitive and space-filling species can either enhance or reduce susceptibility to invasion depending on whether dominants create a more competitive environment or alleviate stressful conditions.  相似文献   

5.
Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long‐term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass‐dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum‐dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass‐dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass‐dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass‐dominated plots. Despite large differences in abundances and species richness, Simpson’s D diversity and Shannon‐Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass‐dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass‐dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate.  相似文献   

6.
Immigration rates of species into communities are widely understood to influence community diversity, which in turn is widely expected to influence the susceptibility of ecosystems to species invasion. For a given community, however, immigration processes may impact diversity by means of two separable components: the number of species represented in seed inputs and the density of seed per species. The independent effects of these components on plant species diversity and consequent rates of invasion are poorly understood. We constructed experimental plant communities through repeated seed additions to independently measure the effects of seed richness and seed density on the trajectory of species diversity during the development of annual plant communities. Because we sowed species not found in the immediate study area, we were able to assess the invasibility of the resulting communities by recording the rate of establishment of species from adjacent vegetation. Early in community development when species only weakly interacted, seed richness had a strong effect on community diversity whereas seed density had little effect. After the plants became established, the effect of seed richness on measured diversity strongly depended on seed density, and disappeared at the highest level of seed density. The ability of surrounding vegetation to invade the experimental communities was decreased by seed density but not by seed richness, primarily because the individual effects of a few sown species could explain the observed invasion rates. These results suggest that seed density is just as important as seed richness in the control of species diversity, and perhaps a more important determinant of community invasibility than seed richness in dynamic plant assemblages.  相似文献   

7.
Productivity influences the availability of resources for colonizing species. Biodiversity may also influence invasibility of communities because of more complete use of resource types with increasing species richness. We hypothesized that communities with higher environmental productivity and lower species richness should be more invasible by a competitor than those where productivity is low or where richness is high. We experimentally examined the invasion resistance of herbivorous meiofauna of Jamaican rock pools by a competitor crustacean (Ostracoda: Potamocypris sp. (Brady)) by contrasting three levels of nutrient input and four levels of species richness. Although relative abundance (dominance) of the invasive was largely unaffected by resource availability, increasing resources did increase the success rate of establishment. Effects of species richness on dominance were more pronounced with a trend towards the lowest species richness treatment of 2 resident species being more invasible than those with 4, 6, or 7 species. These results can be attributed to a ‘sampling effect associated with the introduction of Alona davidii (Richard) into the higher biodiversity treatments. Alona dominated the communities where it established and precluded dominance by the introduced ostracod. Our experimental study supports the idea that niche availability and community interactions define community invasibility and does not support the application of a neutral community model for local food web management where predictions of exotic species impacts are needed.  相似文献   

8.
Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions.  相似文献   

9.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

10.
Much work in ecology has focused on understanding how changes in community diversity and composition will affect the temporal stability of communities (the degree of fluctuations in community abundance or biomass over time). While theory suggests diversity and dominant species can enhance temporal stability, empirical work has tended to focus on testing the effect of diversity, often using synthetic communities created with high species evenness. We use a complementary approach by studying the temporal stability of natural plant communities invaded by a dominant exotic, Erodium cicutarium. Invasion was associated with a significant decline in community diversity and change in the identity of the dominant species allowing us to evaluate predictions about how these changes might affect temporal stability. Community temporal stability was not correlated with community richness or diversity prior to invasion. Following invasion, community stability was again not correlated with community richness but was negatively correlated with community diversity. Before and after invasion, community stability was positively correlated with the stability of the most dominant species in the community, even though the identity of the dominant species changed from a native (prior to invasion) to an exotic species. Our results demonstrate that invasion by a dominant exotic species may reduce diversity without negatively affecting the temporal stability of natural communities. These findings add support to the idea that dominant species can strongly affect temporal stability, independent of community diversity.  相似文献   

11.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

12.
Aims To determine if an experimentally applied anomalous weather year could have effects on species composition and community structure that would carry over into the following year.Methods We conducted a field experiment applying two levels of temperature (ambient and +4°C) and two levels of precipitation (ambient and doubled) and followed cover of plant species during the treatment year and one post-treatment year. Data analysis included ordination analysis, examination of species frequency distributions and comparison of cover of functional groups and individual species.Important findings A drought during the summer and fall of the treatment year resulted in significant differences in community structure between the 2 years. C3 and winter annual species were depressed in the spring of the second year following the dry autumn. Species richness and legume cover increased in the second, wetter, year. Treatments caused no overall differences in community structure but did alter the dominance hierarchy of species among treatments as well as years. Warming decreased relative cover of winter annuals and early spring-flowering species but increased other annuals. Warming and double precipitation together increased cover of C4 perennial graminoids. In particular, the warming and precipitation treatments both increased the abundance of Andropogon gerardii, not individually altering the dominance hierarchy but together nearly doubling the relative cover of A.gerardii, making it the most abundant species in the combined treatment, while the cover of Bromus arvensis, the former dominant, decreased by 25%. The following year, Andropogon relative cover increased further in the former warmed plots, becoming dominant in both the formerly warmed and warmed plus double precipitation treatments. The year following treatments also saw an increase in relative cover of summer-blooming species in the formerly warmed plots and differences among the former treatments in species richness of functional groups. If the effects of one anomalous year on plant abundance can carry over into the following year, several warm years could have a significant impact on plant community structure.  相似文献   

13.
The relationship between invasion success and native biodiversity is central to biological invasion research. New theoretical and analytical approaches have revealed that spatial scale, land‐use factors and community assemblages are important predictors of the relationship between community diversity and invasibility and the negative effects of invasive species on community diversity. In this study we assess if the abundance of Lithobates catesbeianus, the American bullfrog, negatively affects the richness of native amphibian species in Atlantic Forest waterbodies in Brazil. Although this species has been invading Atlantic Forest areas since the 1930s, studies that estimate the invasion effects upon native species diversity are lacking. We developed a model to understand the impact of environmental, spatial and species composition gradients on the relationships between bullfrogs and native species richness. We found a weak positive relationship between bullfrog abundance and species richness in invaded areas. The path model revealed that this is an indirect relationship mediated by community composition gradients. Our results indicate that bullfrogs are more abundant in certain amphibian communities, which can be species‐rich. Local factors describing habitat heterogeneity were the main predictors of amphibian species richness and composition and bullfrog abundance. Our results reinforce the important role of habitats in determining both native species diversity and potential invasibility.  相似文献   

14.
Interspecific facilitation contributes to the assembly of desert plant communities. However, we know little of how desert communities invaded by exotic species respond to facilitation along regional-scale aridity gradients. These measures are essential for predicting how desert plant communities might respond to concomitant plant invasion and environmental change. Here, we evaluated the potential for Bromus tectorum (a dominant invasive plant species) and the broader herbaceous plant community to form positive associations with native shrubs along a substantial aridity gradient across the Great Basin, Mojave, and San Joaquin Deserts in North America. Along this gradient, we sampled metrics of abundance and performance for B. tectorum, all native herbaceous species combined, all exotic herbaceous species combined, and the total herbaceous community using 180 pairs of shrub and open microsites. Across the gradient, B. tectorum formed strong positive associations with native shrubs, achieving 1.6–2.2 times greater abundance, biomass, and reproductive output under native shrubs than away from shrubs, regardless of relative aridity. In contrast, the broader herbaceous community was not positively associated with native shrubs. Interestingly, increasing B. tectorum abundance corresponded to decreasing native abundance, native species richness, exotic species richness, and total species richness under but not away from shrubs. Taken together, these findings suggest that native shrubs have considerable potential to directly (by increasing abundance and performance) and indirectly (by increasing competitive effects on neighbors) facilitate B. tectorum invasion across a large portion of the non-native range.  相似文献   

15.
A series of communities were established in situ to differentiate the effects of species richness, functional richness and functional group identity on invasibility of Mediterranean annual old fields. We monitored the demographic and vegetative parameters of two exotic annuals introduced as seedlings, Conyza bonariensis and C. canadensis . Community species richness and functional composition determined resistance to invasion by Conyza. Conyza bonariensis biomass decreased with increasing species richness. Legumes increased the biomass and consequently the net fecundity of both Conyza , while survival was favoured by Asteraceae . Communities with fewer Asteraceae and grasses increased the reproductive effort of C. bonariensis . A separate glasshouse experiment using the same species mixes revealed that establishment of Conyza decreased with increasing species richness or when grasses were present. Patterns of Conyza performance are interpreted in the light of measurements of ecosystem functional parameters, making it possible to formulate hypotheses about mechanisms limiting community invasibility.  相似文献   

16.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

17.
Plant invasions are known to have negative impacts on native plant communities, yet their influence on higher trophic levels has not been well documented. Past studies investigating the effects of invasive plants on herbivores and carnivores have been largely observational in nature and thus lack the ability to tease apart whether differences are a cause or consequence of the invasion. In addition, understanding how plant traits and plant species compositions change in invaded habitats may increase our ability to predict when and where invasive plants will have effects that cascade to animals. To assess effects on arthropods, we experimentally introduced a non‐native plant (Microstegium vimineum, Japanese stiltgrass) in a community re‐assembly experiment. We also investigated possible mechanisms through which the invader could affect associated arthropods, including changes in native plant species richness, above‐ground plant biomass, light availability and vegetation height. In experimentally invaded plots, arthropod abundance was reduced by 39%, and species richness declined by 19%. Carnivores experienced greater reductions in abundance than herbivores (61% vs 31% reduction). Arthropod composition significantly diverged between experimentally invaded and control plots, and particular species belonging to the abundant families Aphididae (aphids), Formicidae (ants) and Phalacridae (shining flower beetles) contributed the most to compositional differences. Among the mechanisms we investigated, only the reduction in native plant species richness caused by invasion was strongly correlated with total arthropod abundance and richness. In sum, our results demonstrate negative impacts of M. vimineum invasion on higher trophic levels and suggest that these effects occur, in part, indirectly through invader‐mediated reductions in the richness of the native plant community. The particularly strong response of carnivores suggests that plant invasion could reduce top–down control of herbivorous species for native plants.  相似文献   

18.
Fungal endophytes may alter plant responses to the environment, but how does the environment affect the communities of fungal symbionts within plants? We examined the impact of nutrient addition and herbivore exclusion on endophyte communities of the prairie grass Andropogon gerardii in a full factorial field experiment. Fungi were cultured from stems, young leaves, and mature leaves, ITS sequences obtained, and endophyte incidence, community richness, and composition analyzed. Results indicate that in plots where nutrient addition and herbivore exclusion treatments had been applied separately, fungal endophyte incidence, community composition or evenness did not differ, but that greater species richness was observed in plots with nutrient addition and herbivore exclusion treatments applied in combination, compared to other treatments. Further, although fungal community composition was significantly different in stem and leaf tissues, OTU richness was greater in all endophyte communities in nutrient addition plus herbivore exclusion treatments, regardless of tissue type. Our results indicate the distinct fungal endophyte communities found in different plant tissues respond similarly to environmental factors.  相似文献   

19.
At two field sites that differed in fertility, we investigated how species richness, functional group diversity, and species composition of constructed plant communities influenced invasion. Grassland communities were constructed to be either functionally diverse or functionally simple based on belowground resource use patterns of constituent species. Communities were also constructed with different numbers of species (two or five) to examine interactions between species richness, functional diversity and invasion resistance. We hypothesized that communities with more complementary belowground resource use (i.e., more species rich and more functionally diverse communities) would be less easily invaded than communities with greater degrees of belowground resource use overlap. Two contrasting invasive species were introduced: an early-season, shallow rooting annual grass, Bromus hordeaceus (soft chess), and a late-season, deep rooting annual forb, Centaurea solstitialis (yellow starthistle). Invader responses to species richness and functional diversity treatments differed between sites. In general, the more similar the patterns of belowground resource use between residents of the plant community and the invader, the poorer the invader’s performance. Complementarity or overlap of resource use among species in the constructed communities appeared to affect invader success less than complementarity or overlap of resource use between the invader and the species present in the community.  相似文献   

20.
Several studies have presented experimental evidence that diversity reduces invasibility in grassland communities. The interpretation of these results has been disputed recently and it was proposed that sampling effects were responsible for the observed decrease of invasibility with diversity. The experiments performed to date were not designed to adequately separate sampling from diversity effects. Using the establishment of native plant species in experimental plant communities as a model of invasibility, we show that the number of invaders decreased with increasing diversity. When the presence of particular species is included, their effects are dominant. Centaurea jacea showed a strong effect at low diversity, whereas Leucanthemum vulgare showed a very strong negative impact at each diversity level. The negative effect of the latter might be related to root‐feeding nematodes that showed far higher abundance in plots with Leucanthemum. However, diversity remained a significant factor in determining the number of invading species and the numbers of an abundant invader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号