首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration and composition of brain gangliosides of 17 mammalian species belonging to the subclasses of Prototheria (monotremes), Metatheria (marsupials), and Eutheria (placentals) were investigated. The mean concentration of brain gangliosides ranges from 525 to 610 micrograms NeuAc/g wet wt in monotremes, 445-900 micrograms in marsupials and from 630 to 1130 micrograms in the placentals. In the phylogenetic series of mammals, a decrease in the complexity of brain ganglioside composition becomes obvious: a drastic reduction in the number of individual ganglioside fractions particularly those of the c-pathway of biosynthesis, took place from the level of monotremes to that of the marsupials and placentals. In monotremes, marsupials and "lower" placentals (insectivores) the percentage of alkali-labile gangliosides is relatively low (between traces and 5%), whereas in the higher evolved mammals it amounts to about 20% of all gangliosides. The ratio of the contents of the two major mammalian ganglioside fractions GD1a and GT1b is generally in the range of 1.0 and even higher; in the heterothermic platypus from the monotremes and in hibernators among the placental mammals, however, it is much lower (about 0.8). These data support the hypothesis that the brain ganglioside composition not only depends on the phylogenetic level of nervous organization (cephalization) but is additionally correlated with the state of thermal adaptation.  相似文献   

2.
Comparative studies on brain gangliosides of more than 60 vertebrate species show correlations between concentration and the level of evolutionary organization: poikilothermic lower vertebrates (fish, amphibs, reptiles) contain about 110 to 700 μg ganglioside bound NeuAc/g. fresh wt., homeothermic birds and mammals, on the other side, 500 to 1000 μg. The composition of brain gangliosides in poikilotherms is much more complex and variable (more multisialogangliosides) as compared with homeotherms (domination of less polar fractions). There are distinct correlations between brain ganglioside composition and state of thermal adaptation: Fishes being adapted to habitates with extreme temperatures (antarctic icefish — tropic fish) are characterized by quite opposite ganglioside patterns (domination of high versus less polar fractions). During seasonal acclimatization and experimental acclimation of fish to cold or during hibernation and early postnatal development of mammals poly-sialylations of brain gangliosides occur. With regard to this the individual brain structures react differently.

The results are taken for evidence that variations in the composion of synaptic membrane-bound gangliosides may induce long-term alterations in viscosity and permeability of the neuronal membrane by which the neuronal transmission might be kept on a constant level during the process of temperature adaptation.  相似文献   


3.
4.
Summary Djungarian dwarf hamsters,Phodopus s. sungorus, were kept in natural photoperiodic conditions throughout the year, either inside at a constantT a of 23°C or outside subjected to seasonally varyingT a. Comparisons were made between hamsters from both conditions to evaluate the significance of seasonal changes in photoperiod and/orT a as environmental cues for seasonal acclimatization inPhodopus. Basal metabolic rate was lowest in July (1.68 ml/g·h) and highest in January (2.06 ml/g·h inPhodopus living outside), combined with a decrease inT 1c from 26°C in July to 20°C in January. This was parallelled by seasonal changes in body weight (summer 42 g, winter 25g), fur colouration, fur depth and the occurrence of short daily torpor.AtT a below thermoneutrality total energy requirements for thermoregulation in winter acclimatizedPhodopus were found 36% lower than summer values (e.g. at O°CT a in summer 1,160 mW, in winter 760 mW), which were effected by a combined strategy of reducing body weight (19%) together with improvements of thermal insulation of the body surface (17%). All seasonal changes were similar inPhodopus living inside or outside, suggesting that seasonal changes in photoperiod and not seasonal changes inT a is the overriding controller for the environmental cueing of seasonality in energy requirements for thermoregulation.This research was supported by the Deutsche Forschungsgemeinschaft (He 990)  相似文献   

5.
The concentration and composition of gangliosides from the brain of eight species of Antarctic Notothenioid fishes belonging to the class of perciformes and two species of boreal fishes (tropic cichlid fish Oreochromis mossambicus; Codfish Gadus morhua) were investigated. The concentration of whole brain gangliosides in Notothenioid fishes (between 1622 and 2183 μg NeuAc/g dry wt.) was slightly lower than that in the brains of fish species, which live in warm, temperate habitats (2483 μg NeuAc/g dry wt.). The composition of brain gangliosides was completely different from that of warm adapted fish species (e.g. the tropic cichlid fish Oreochromis mossambicus). The relative concentration of polysialogangliosides (GT1b-GH) is strongly increased in all the investigated Antarctic species. They were found to have the most complex and most polar brain ganglioside pattern (high degree of sialylation and alkali-lability) within the teleosts. This may be one of the mechanisms, beside antifreeze proteins, to keep the neuronal membranes functional even below the freezing point.  相似文献   

6.
Summary The composition and oxidative capacity of brown adipose tissue (BAT) were investigated in Djungarian hamsters kept under natural photoperiod, either indoors at neutralT a (23°C) or under outdoor conditions. BAT comprises up to 5% of the body weight in summer/indoor hamster, with lipid representing 86% of the total tissue mass. Tissue mass and thermogenic capacity are inversely related during seasonal adaptation: 30% decrease of total DNA, accompanied by extensive lipid depletion, reduces the amount of BAT by almost 60% during acclimatization from summer/indoor to winter/outdoor conditions. Mitochondrial protein in BAT is increased by a factor of 2.6 concomitantly, and by a factor of 4 when related to body weight (body weight reduction 36%).Cytochrome oxidase activity in different brown fat deposits varies by up to 150% in summer/indoor hamsters; depending on the fat pad, the enzyme activity is increased 200%–700% during adaptation to winter/outdoor conditions.Natural photoperiod is decisive in determining the seasonal adaptation of DNA content in BAT and of body weight. Short photoperiod alone may lead to depletion of lipid content of BAT and thus decrease the tissue mass practically to the lowest seasonal level, even though both parameters may be also influenced byT a. One third of the maximum adaptive increase of tissue mitochondria may be attributed to seasonal changes in photoperiod and up to two thirds toT a. Photoperiod establishes a fixed fundament of slow-reacting functional adaptation of BAT, whereas the effect of decreasedT a depends on the rate and duration of cold influence.Abbreviations BAT brown adipose tissue - NST nonshivering thermogenesis - T a ambient temperature  相似文献   

7.
Pelage is seasonally dimorphic in the Arctic fox. During the winter, fur lengths for this species are nearly double similar values taken during the summer season. Considerable site-specific differences in fur length are noted. In general, body sites which are exposed to the environment when an Arctic fox lies in a curled position show greater fur lengths in all seasons and greater seasonal variations than body sites that are more protected during rest. Well-furred sites may tend to conserve heat during periods of inactivity, and scantily furred sites may tend to dissipate heat during periods of exercise. The growth of winter fur may compensate for the severe cold of the arctic winter. Changes in fur lengths indicate a definite pattern in spite of individual variations. During the fall months, fur lengths seem to lag behind an increasing body-to-ambient temperature gradient. Both body-to-ambient temperature gradients and fur lengths peak during December through February. From March through June, gradual environmental warming is accompanied by a decrease in average fur lengths. Thus, there appears to be a remarkable parallel between the body-to-ambient temperature gradient and the fur lengths. The growth of fur in the Arctic fox parallels annual changes in ambient temperature and photoperiod.Presented at the Eighth International Congres of Biometerorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

8.
1. Of three sets of Djungarian dwarf hamster, two groups were raised during winter under greatly differing circumstances. One winter group was raised within a climate controlled cage in which the ambient temperature was maintained at 22 degrees C and whereby conditions of light vs darkness were maintained in a constant 12 hr cycle. The second winter group was raised out of doors whereby the hamsters were subjected to prevailing seasonal environmental conditions. A third group was studied under summer conditions, as well. Ca(2+)-, Mg(2+)- and (Ca2+/Mg2+)-ATPase activity was analysed in cellular (= total homogenate) and subcellular fractions (P1-, synaptosomal fraction, synaptic membranes) from cortex, cerebellum and basal brain. 2. The data obtained indicate similar ATPase activity in the cortical homogenates of the winter indoor and summer hamsters. 3. Winter outdoor animals experiencing normal torpidity, however, exhibited reduced ATPase activity by about 50%. 4. Cortical subcellular fractions yielded different results: both the winter and the summer groups showed high ATPase activity in the synaptosomal and synaptic membrane fractions. 5. In the total cerebellar homogenate, the hamsters raised under summer and winter conditions showed the greatest enzyme activity, although less activity was seen in the subcellular fractions. 6. The ATPase activity in the basal brain was found to be nearly identical in all three hamster groups.  相似文献   

9.
The night monkeys (Aotus azarai) of Formosa, Argentina provide an opportunity to investigate the influences of ambient temperature and photoperiod on reproduction in a highly seasonal environment: the Chaco. Between 1997 and 2000, we collected data to evaluate the relationship between rainfall, ambient temperature, photoperiod and food availability and the annual distribution of mating behavior and births in 15 groups of monkeys in the forests of the Eastern Argentinean Chaco. Our data show that the area is highly seasonal, characterized by significant fluctuations in rainfall, temperature, photoperiod and food availability. There are two rain peaks in April and November and a dry season lasting from June to August. Monthly mean temperatures were on average 11°C lower during winter months than they were during summer months. Temperatures <10°C and >33°C were also frequent through the year. Days are 3 h longer during the summer than during the winter months. Insect abundance and the percentage of tree species producing fruits, flowers or new leaves reached a low in the coldest winter months. Mating was infrequent, and we only observed it between May and September. Half the births (n = 13) occurred during a 2-week period in October. Infant survival during the first 6 mo of life was high (96%). Our findings suggest an environmental control of reproduction. Changes in photoperiod and temperature may promote reproductive activity in females that might conceive and begin pregnancy at a time void of high temperatures that could be metabolically challenging.  相似文献   

10.
11.
The Djungarian hamster exhibits an agouti pelage in the summer and a predominantly white pelage in the winter. This pelage color cycle is known to be regulated by the length of the daily photoperiod probably acting through the pineal gland, as is the seasonal cycle of reproductive function with which it is closely correlated ( Figala et al., '73; Hoffmann, ' 78b ). The possibility of a causal relationship between the decline in gonadal hormone secretion and the coat color change occurring in short photoperiod was examined. Gonadectomized and intact male and female hamsters were exposed to either long (16L:8D) or short ( 10L : 14D ) photoperiod for several months. Gonadectomy neither induced the change to the winter pelage color in long photoperiod-housed animals, nor prevented either the change to the winter pelage or the spontaneous return to summer pelage color in short photoperiod-housed animals. Chronic implants of testosterone in castrated males delayed and attenuated the short photoperiod-induced coat color change. Administration of ovine prolactin (100 micrograms/day) stimulated pigmentation in hamsters with the winter pelage, whereas administration of a alpha MSH (30 micrograms/day) was without effect. These results suggest that changes in pelage color may be regulated largely by changes in pituitary prolactin secretion and modified to some extent by changes in gonadal steroid hormone secretion.  相似文献   

12.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in small, wild mammals. To determine the contributions of photoperiod and cold on seasonal changes in energy metabolism and body mass, the resting metabolic rates (RMR), nonshivering thermogenesis (NST), energy intake and gut morphology of the tree shrews were determined in winter and summer and in laboratory acclimated animals. Body mass, RMR and NST increased in winter, and these changes were mimicked by exposing animals to short-day photoperiod or cold in the animal house. Energy intake and digested energy also increased significantly in winter, and also during exposure of housed animals to both short-day photoperiod and cold. The lengths and weights of small intestine increased in winter. These results indicated that Tupaia belangeri overcomes winter thermoregulatory challenges by increasing energy intake and thermogenesis, and adjusted gut morphology to balance the total energy requirements. Short-day photoperiod and cold can serve as environmental cues during seasonal acclimatization.  相似文献   

13.
A photoperiod-related seasonal rhythm in active period (scotophase), metabolic rate and core temperature was documented for animals held at 21.0 +/- 0.1 degrees C ambient; animals that were habituated to long nights (10:14LD) had a greater metabolic reserve than those held in summer photoperiods (14:10LD). While relative weights of gonads and sex accessory tissues of mice show typical "winter" regression, interscapular brown adipose tissue mass was unaffected by photoperiod; moreover, IBAT beta adrenergic responses under "winter" photoperiods did not differ from "summer" photoperiods in the absence of cold stimulus. Thermogenic efficiency, measured as the increment of active temperature level achieved per increment of active period metabolic effort, was highest for animals exposed to short photoperiods. Thermal conductance was reduced in animals exposed to short (10:14LD) photoperiods. Heat conservation and thermogenic response capacity was enhanced by melatonin treatment and short photoperiod.  相似文献   

14.
Hypobaric hypoxia (10 h daily, pO2 10 kPa) and saline administration (2.5 microliters/g body wt) from the 2nd till the 11th day of life both induced a long-lasting increase of the low-affinity dopamine (DA) uptake capacity in S1-fractions of the rat striatum. Additionally, the potassium-stimulated DA release was enhanced in adult control rats postnatally injected with saline. The administration of a mixture of bovine brain gangliosides (30 micrograms/g body wt) was found to prevent these effects. However, the kinetic constants of the DA uptake of hypoxic rats treated with gangliosides were reduced in comparison to untreated controls. Thus, the effects of gangliosides appear to differ between hypoxic and control conditions. The modification of the dopaminergic activity during brain development is discussed as a possible mechanism of the preventive effects of gangliosides against long-term cerebral dysfunctions following hypoxia or stress.  相似文献   

15.
The content of glutamate, GABA, aspartate, glycine and alanine was determined in the cerebellum, brain stem and cerebrum of three different mutant mice which have been named ‘staggerer’, ‘weaver’ and ‘nervous’ on the basis of neurological symptoms. In the ‘staggerer’ and ‘weaver’ mutants there is an almost complete absence of granule cells in the cerebellar cortex while in the ‘nervous’ mutant there is a loss of Purkinje cells (and to a lesser extent a loss of granule cells) in the cerebellar cortex. In the cerebellum of the ‘weaver’ mutant, the content of glutamate was signficantly lower (P < 0.025) than control values (8.77 ± 0.76 vs 12.0 ± 1.3 μmol/g tissue wet wt) and the contents of GABA and glycine were significantly greater than normal levels. In the cerebellum of the ‘staggerer’ mutant, the content of glutamate was significantly lower (6.62 ± 0.70 μmol/g) and the contents of glycine and alanine significantly higher than control values. In the cerebrum and brain stem regions of the staggerer mutant, weaver mutant and the normals the contents of the five amino acids were the same. The contents of glycine and alanine in the cerebellum, GARA and glycine in the brain stem and GABA and alanine in the cerebrum of the nervous mutants were higher than control values. The data are discussed in terms of a possible role for glutamate functioning as an excitatory transmitter when released from the cerebellar granule cells.  相似文献   

16.
For their seasonal control of thermogenesis Djungarian hamsters rely on environmental cueing by both photoperiod and ambient temperature. Their total potential for adaptive improvements of nonshivering thermogenesis is constant in summer and winter. The shortening of photoperiod in fall is used to anticipate about half of the total improvement in thermogenesis, in advance of any experience of cold, as can be concluded from the photoperiodic control of thermogenesis, cold resistance, and the protein content, cyctochrome oxidase activity and content of mitochondria in brown adipose tissue. The remainder of the seasonal thermogenic adaptation is due to stimulatory responses to chronic exposure to cold.This research was supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogramm Mechanismen der Temperaturregulation und -Adaptation.  相似文献   

17.
Seasonal changes in pineal function are well coordinated with seasonal reproductive activity of tropical birds. Further, immunomodulatory property of melatonin is well documented in seasonally breeding animals. Present study elucidates the interaction of peripheral melatonin with seasonal pattern of immunity and reproduction in Indian tropical male bird Perdicula asiatica. Significant seasonal changes were noted in pineal, testicular and immune function(s) of this avian species. Maximum pineal activity along with high immune status was noted during winter month while maximum testicular activity with low immune status was noted in summer. During summer month's long photoperiod suppressed pineal activity and high circulating testosterone suppressed immune parameters, while in winter short photoperiod elevated pineal activity and high circulating melatonin maintained high immune status and suppressed gonadal activity. Therefore, seasonal levels of melatonin act like a major temporal synchronizer to maintain not only the seasonal reproduction but also immune adaptability of this avian species.  相似文献   

18.
The gangliosides in the brain of a cartilaginous fish, skate (Bathyraja smirnovi), have been isolated and characterized by means of methylation analysis, antibody binding, enzymatic hydrolysis and MALDI-TOF MS. In addition to gangliosides with known structures (GM2, fucosyl-GM1, GD3, GD2, GT3 and GT2), five polysialogangliosides were isolated and characterized as having the following structures. (1) IV3NeuAc, III6NeuAc, II3NeuAc-Gg4Cer; (2) IV3NeuAc2, III6NeuAc, II3NeuAc-Gg4Cer; (3) IV3NeuAc, III6NeuAc, II3NeuAc2-Gg4Cer; (4) IV3NeuAc, III6NeuAc, II3NeuAc3-Gg4Cer; and (5) IV3NeuAc2, III6NeuAc, II3NeuAc3-Gg4Cer. These structures are 'hybrid-type' which comprise combinations of alpha-series and either a, b or c-series structures. Three gangliosides (2), (4) and (5), were novel. The main features of the ganglioside composition of skate brain were an abundance of gangliotriaosyl species, a lack of gangliotetraosyl species (except fucosyl-GM1), and an abundance of hybrid-types. These characteristics closely resemble those in shark brain which we reported previously [Nakamura, K., Tamai, Y. & Kasama, T. (1997) Neurochem. Int. 30, 593-604]. Two of the hybrid-type gangliosides (1) and (4), were examined for their neuritogenic activity toward cultured neuronal cells (Neuro-2A), and were found to have more potent activity than nonhybrid-type gangliosides such as GM1.  相似文献   

19.
Calmodulin contents of cortex, cerebellum, striatum, diencephalon, and medulla + pons and of subcellular fractions of each region were determined by radioimmunoassay. The diencephalon had the highest level of calmodulin (48.87 +/- 4.56 micrograms/mg protein), whereas medulla + pons had the lowest level (8.01 +/- 0.84 micrograms/mg protein). In all brain regions, the mitochondrial fraction was richest in calmodulin (from 71 to 227 micrograms/mg protein) whereas other areas contained from 6 to 66 micrograms/mg protein.  相似文献   

20.
The diurnal variations of several plasma hormones and free fatty acids (FFA) were studied during periods in summer and winter for pigeons reared either outdoors or indoors. The latter were subjected to constant temperature and naturally varying photoperiods. A significant seasonal variation in the mean daily levels of triiodothyronine (T3), thyroxine (T4), corticosterone (B), lutropin (LH) and FFA was seen in the outdoor birds and in the T4 and B levels of indoor birds. The diurnal variation of hormone levels was generally more pronounced in winter in both groups. Cold ambient temperature significantly decreased the plasma LH level and potentiated the increasing effect of short photoperiod on plasma B level. Diurnal variation of plasma FFA level seems to be under the control of photoperiod, without any effects due to the ambient temperature. No significant correlation was found between FFA and GH concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号