首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Poppers J  Mulvey M  Khoo D  Mohr I 《Journal of virology》2000,74(23):11215-11221
Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The gamma 34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the gamma 34.5 gene specifies a regulatory subunit for protein phosphatase 1 alpha, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. gamma 34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of gamma 34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.  相似文献   

2.
The NS5A nonstructural protein of hepatitis C virus (HCV) has been shown to inhibit the cellular interferon (IFN)-induced protein kinase R (PKR). PKR mediates the host IFN-induced antiviral response at least in part by inhibiting mRNA translation initiation through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). We thus examined the effect of NS5A inhibition of PKR on mRNA translation within the context of virus infection by using a recombinant vaccinia virus (VV)-based assay. The VV E3L protein is a potent inhibitor of PKR. Accordingly, infection of IFN-pretreated HeLa S3 cells with an E3L-deficient VV (VVDeltaE3L) resulted in increased phosphorylation levels of both PKR and eIF2alpha. IFN-pretreated cells infected with VV in which the E3L locus was replaced with the NS5A gene (VVNS5A) displayed diminished phosphorylation of PKR and eIF2alpha in a transient manner. We also observed an increase in activation of p38 mitogen-activated protein kinase in IFN-pretreated cells infected with VVDeltaE3L, consistent with reports that p38 lies downstream of the PKR pathway. Furthermore, these cells exhibited increased phosphorylation of the cap-binding initiation factor 4E (eIF4E), which is downstream of the p38 pathway. Importantly, these effects were reduced in cells infected with VVNS5A. NS5A was also found to inhibit activation of the p38-eIF4E pathway in epidermal growth factor-treated cells stably expressing NS5A. NS5A-induced inhibition of eIF2alpha and eIF4E phosphorylation may exert counteracting effects on mRNA translation. Indeed, IFN-pretreated cells infected with VVNS5A exhibited a partial and transient restoration of cellular and viral mRNA translation compared with IFN-pretreated cells infected with VVDeltaE3L. Taken together, these results support the role of NS5A as a PKR inhibitor and suggest a potential mechanism by which HCV might maintain global mRNA translation rate during early virus infection while favoring cap-independent translation of HCV mRNA during late infection.  相似文献   

3.
Full replication of adeno-associated virus type 5 (AAV5) is sustained by adenovirus type 5 (Ad5) helper functions E1a, E1b, E2a, E4Orf6, and virus-associated (VA) RNA; however, their combined net enhancement of AAV5 replication was comprised of both positive and negative individual effects. Although Ad5 E4Orf6 was required for AAV5 genomic DNA replication, it also functioned together with E1b to degrade de novo-expressed, preassembled AAV5 capsid proteins and Rep52 in a proteosome-dependent manner. VA RNA enhanced accumulation of AAV5 protein, overcoming the degradative effects of E4Orf6, and was thus required to restore adequate amounts of AAV5 proteins necessary to achieve efficient virus production.  相似文献   

4.
Inhibition of protein translation plays an important role in apoptosis. While double-stranded RNA-dependent protein kinase (PKR) is named as it is activated by double-stranded RNA produced by virus, its activation induces an inhibition of protein translation and apoptosis via the phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha). PKR is also a stress kinase and its levels increase during ageing. Here we show that PKR activation and eIF2alpha phosphorylation play a significant role in apoptosis of neuroblastoma cells and primary neuronal cultures induced by the beta-amyloid (Abeta) peptides, the calcium ionophore A23187 and flavonoids. The phosphorylation of eIF2alpha and the number of apoptotic cells were enhanced in over-expressed wild-type PKR neuroblastoma cells exposed to Abeta peptide, while dominant-negative PKR reduced eIF2alpha phosphorylation and apoptosis induced by Abeta peptide. Primary cultured neurons from PKR knockout mice were also less sensitive to Abeta peptide toxicity. Activation of PKR and eIF2alpha pathway by Abeta peptide are triggered by an increase in intracellular calcium because the intracellular calcium chelator BAPTA-AM significantly reduced PKR phosphorylation. Taken together, these results reveal that PKR and eIF2alpha phosphorylation could be involved in the molecular signalling events leading to neuronal apoptosis and death and could be a new target in neuroprotection.  相似文献   

5.
6.
7.
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.  相似文献   

8.
9.
Zhu R  Zhang YB  Zhang QY  Gui JF 《Journal of virology》2008,82(14):6889-6901
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2alpha. The interaction between PoPKR and eIF2alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.  相似文献   

10.
A short model genome RNA and also the genome RNA of influenza A virus bearing both 5′- and 3′-terminal common sequences activated the interferon-induced double-stranded-RNA-dependent protein kinase, PKR, by stimulating autophosphorylation in vitro. The activated PKR catalyzed phosphorylation of the alpha subunit of eucaryotic translation initiation factor 2 (eIF2α). The NS1 protein efficiently eliminated the PKR-activating activity of these RNAs by binding to them. Two mutant NS1 proteins, each harboring a single amino acid substitution at different regions, exhibited temperature sensitivity in their RNA binding activity in the mutant virus-infected cell lysates as well as when they were prepared as fusion proteins expressed in bacteria. The virus strains carrying these mutant NS1 proteins exhibited temperature sensitivity in virus protein synthesis at the translational level, as reported previously, and could not repress the autophosphorylation of PKR developing during the virus growth, which is normally suppressed by a viral function(s). As a result, the level of eIF2α phosphorylation was elevated 2.5- to 3-fold. The defect in virus protein synthesis was well correlated with the level of phosphorylation of PKR and eIF2α.  相似文献   

11.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   

12.
Most viruses express during infection products that prevent or neutralize the effect of the host dsRNA activated protein kinase (PKR). Translation of Sindbis virus (SINV) mRNA escapes to PKR activation and eIF2 phosphorylation in infected cells by a mechanism that requires a stem loop structure in viral 26S mRNA termed DLP to initiate translation in the absence of functional eIF2. Unlike the rest of viruses tested, we found that Alphavirus infection allowed a strong PKR activation and eIF2α phosphorylation in vitro and in infected animals so that the presence of DLP structure in mRNA was critical for translation and replication of SINV. Interestingly, infection of MEFs with some viruses that express PKR inhibitors prevented eIF2α phosphorylation after superinfection with SINV, suggesting that viral anti-PKR mechanisms could be exchangeable. Thus, translation of SINV mutant lacking the DLP structure (ΔDLP) in 26S mRNA was partially rescued in cells expressing vaccinia virus (VV) E3 protein, a known inhibitor of PKR. This case of heterotypic complementation among evolutionary distant viruses confirmed experimentally a remarkable case of convergent evolution in viral anti-PKR mechanisms. Our data reinforce the critical role of PKR in regulating virus-host interaction and reveal the versatility of viruses to find different solutions to solve the same conflict.  相似文献   

13.
Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.  相似文献   

14.
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.  相似文献   

15.
Infectious bursal disease virus (IBDV) is an avian pathogen responsible for an acute immunosuppressive disease that causes major losses to the poultry industry. Despite having a bipartite dsRNA genome, IBDV, as well as other members of the Birnaviridae family, possesses a single capsid layer formed by trimers of the VP2 capsid protein. The capsid encloses a ribonucleoprotein complex formed by the genome associated to the RNA-dependent RNA polymerase and the RNA-binding polypeptide VP3. A previous report evidenced that expression of the mature VP2 IBDV capsid polypeptide triggers a swift programmed cell death response in a wide variety of cell lines. The mechanism(s) underlying this effect remained unknown. Here, we show that VP2 expression in HeLa cells activates the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), which in turn triggers the phosphorylation of the eukaryotic initiation factor 2α (eIF2α). This results in a strong blockade of protein synthesis and the activation of an apoptotic response which is efficiently blocked by coexpression of a dominant negative PKR polypeptide. Our results demonstrate that coexpression of the VP3 polypeptide precludes phosphorylation of both PKR and eIF2α and the onset of programmed cell death induced by VP2 expression. A mutation blocking the capacity of VP3 to bind dsRNA also abolishes its capacity to prevent PKR activation and apoptosis. Further experiments showed that VP3 functionally replaces the host-range vaccinia virus (VACV) E3 protein, thus allowing the E3 deficient VACV deletion mutant WRΔE3L to grow in non-permissive cell lines. According to results presented here, VP3 can be categorized along with other well characterized proteins such us VACV E3, avian reovirus sigmaA, and influenza virus NS1 as a virus-encoded dsRNA-binding polypeptide with antiapoptotic properties. Our results suggest that VP3 plays a central role in ensuring the viability of the IBDV replication cycle by preventing programmed cell death.  相似文献   

16.
Mulvey M  Arias C  Mohr I 《Journal of virology》2006,80(15):7354-7363
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.  相似文献   

17.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

18.
19.
Indomethacin, a cyclooxygenase‐1 and ‐2 inhibitor widely used in the clinic for its potent anti‐inflammatory/analgesic properties, possesses antiviral activity against several viral pathogens; however, the mechanism of antiviral action remains elusive. We have recently shown that indomethacin activates the double‐stranded RNA (dsRNA)‐dependent protein kinase R (PKR) in human colon cancer cells. Because of the important role of PKR in the cellular defence response against viral infection, herein we investigated the effect of indomethacin on PKR activity during infection with the prototype rhabdovirus vesicular stomatitis virus. Indomethacin was found to activate PKR in an interferon‐ and dsRNA‐independent manner, causing rapid (< 5 min) phosphorylation of eukaryotic initiation factor‐2 α‐subunit (eIF2α). These events resulted in shutting off viral protein translation and blocking viral replication (IC50 = 2 μM) while protecting host cells from virus‐induced damage. Indomethacin did not affect eIF2α kinases PKR‐like endoplasmic reticulum‐resident protein kinase (PERK) and general control non‐derepressible‐2 (GCN2) kinase, and was unable to trigger eIF2α phosphorylation in the presence of PKR inhibitor 2‐aminopurine. In addition, small‐interfering RNA‐mediated PKR gene silencing dampened the antiviral effect in indomethacin‐treated cells. The results identify PKR as a critical target for the antiviral activity of indomethacin and indicate that eIF2α phosphorylation could be a key element in the broad spectrum antiviral activity of the drug.  相似文献   

20.
During viral infection, phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) by the interferon-induced RNA-dependent protein kinase, PKR, leads to inhibition of translation initiation and viral proliferation. Activation of PKR is mediated by association of virally encoded double-stranded RNAs (dsRNAs) with two dsRNA binding domains (dsRBDs) located in the N-terminus of PKR. To better understand the molecular mechanisms regulating PKR, we characterized the activities of wild-type and mutant versions of human PKR expressed and purified from yeast. The catalytic rate of eIF2alpha phosphorylation by our purified PKR was increased in response to dsRNA, but not single-stranded RNA or DNA, consistent with the properties previously described for PKR purified from mammalian sources. While both dsRBD1 and dsRBD2 were required for activation of PKR by dsRNA, only deletion of dsRBD1 severely reduced the basal eIF2alpha kinase activity. Removal of as few as 25 residues at the C-terminal junction of dsRBD2 dramatically increased eIF2alpha kinase activity and characterization of larger deletions that included dsRBD1 demonstrated that removal of these negative-acting sequences could bypass the dsRBD1 requirement for in vitro phosphorylation of eIF2alpha. Heparin, a known in vitro activator of PKR, enhanced eIF2alpha phosphorylation by PKR mutants lacking their entire N-terminal sequences, including the dsRBDs. The results indicate that induction of PKR activity is mediated by multiple mechanisms, one of which involves release of inhibition by negative-acting sequences in PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号