首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The erythroleukemia induced by Friend virus complex in adult mice is a multistage malignancy characterized by the emergence, late in the disease, of tumorigenic cell clones. We have previously shown that a significant proportion of these clones have unique rearrangements in their cellular p53 oncogene. The clonal relationships among Friend tumor cells isolated in the late stages of Friend erythroleukemia were analyzed by examining the unique integration site of Friend murine leukemia virus and the unique rearrangement in their cellular p53 oncogene. The majority of clones isolated from individual mice infected with Friend virus were clonally related as judged by the site of Friend murine leukemia virus integration. However, Southern gel analysis of DNA from individual Friend cell clones indicated that all of the clones with a normal p53 gene from the same mice were clonally related, but were unrelated to the Friend cell lines with a rearranged p53 gene. These results suggest that Friend tumor cells with rearrangements in their p53 gene arise as the result of a unique transformation event, rather than by progression from already existing tumor cells with a normal p53 gene. They also suggest that such rearrangements in the p53 gene confer a strong selective advantage to these cells in vivo.  相似文献   

2.
Regulation of PTEN transcription by p53.   总被引:35,自引:0,他引:35  
PTEN tumor suppressor is frequently mutated in human cancers and is a negative regulator of PI3'K/PKB/Akt-dependent cellular survival. Investigation of the human genomic PTEN locus revealed a p53 binding element directly upstream of the PTEN gene. Deletion and mutation analyses showed that this element is necessary for inducible transactivation of PTEN by p53. A p53-independent element controlling constitutive expression of PTEN was also identified. In contrast to p53 mutant cell lines, induction of p53 in primary and tumor cell lines with wild-type p53 increased PTEN mRNA levels. PTEN was required for p53-mediated apoptosis in immortalized mouse embryonic fibroblasts. Our results reveal a unique role for p53 in regulation of cellular survival and an interesting connection in tumor suppressor signaling.  相似文献   

3.
In this study, differential gene expression between normal human mammary epithelial cells and their malignant counterparts (eight well established breast cancer cell lines) was studied using Incyte GeneAlbum 1-6, which contains 65,873 cDNA clones representing 33,515 individual genes. 3,152 cDNAs showed a > or =3.0-fold expression level change in at least one of the human breast cancer cell lines as compared with normal human mammary epithelial cells. Integration of breast tumor gene expression data with the genes in the tumor suppressor p53 signaling pathway yielded 128 genes whose expression is altered in breast tumor cell lines and in response to p53 expression. A hierarchical cluster analysis of the 128 genes revealed that a significant portion of genes demonstrate an opposing expression pattern, i.e. p53-activated genes are down-regulated in the breast tumor lines, whereas p53-repressed genes are up-regulated. Most of these genes are involved in cell cycle regulation and/or apoptosis, consistent with the tumor suppressor function of p53. Follow-up studies on one gene, RAI3, suggested that p53 interacts with the promoter of RAI3 and repressed its expression at the onset of apoptosis. The expression of RAI3 is elevated in most tumor cell lines expressing mutant p53, whereas RAI3 mRNA is relatively repressed in the tumor cell lines expressing wild-type p53. Furthermore, ectopic expression of RAI3 in 293 cells promotes anchorage-independent growth and small interfering RNA-mediated depletion of RAI3 in AsPc-1 pancreatic tumor cells induces cell morphological change. Taken together, these data suggest a role for RAI3 in tumor growth and demonstrate the predictive power of integrative genomics.  相似文献   

4.
The Friend erythroleukemia virus complex contains no cell-derived oncogene. Transformation by this virus may therefore involve mutations affecting cellular gene expression. We provide evidence that inactivating mutations of the cellular p53 gene are a common feature in Friend virus-induced malignancy, consistent with an antioncogene role for p53 in this disease. We have shown that frequent rearrangements of the p53 gene cause loss of expression or synthesis of truncated proteins, whereas overexpression of p53 protein is seen in other Friend cell lines. We now demonstrate that p53 expression in the latter cells is also abnormal, as a result of missense mutations in regions encoding highly conserved amino acids. Three of these aberrant alleles obtained from cells from different mice were cloned and found to function as dominant oncogenes in gene transfer assays, supporting the view that certain naturally occurring missense mutations in p53 confer a dominant negative phenotype on the encoded protein.  相似文献   

5.
DNA damage and/or hyperproliferative signals activate the wild-type p53 tumor suppressor protein, which induces a G(1) cell cycle arrest or apoptosis. Although the mechanism of p53-mediated cell cycle arrest is fairly well defined, the p53-dependent pathway regulating apoptosis is poorly understood. Here we report the functional characterization of murine ei24 (also known as PIG8), a gene directly regulated by p53, whose overexpression negatively controls cell growth and induces apoptotic cell death. Ectopic ei24 expression markedly inhibits cell colony formation, induces the morphological features of apoptosis, and reduces the number of beta-galactosidase-marked cells, which is efficiently blocked by coexpression of Bcl-X(L). The ei24/PIG8 gene is localized on human chromosome 11q23, a region frequently altered in human cancers. These results suggest that ei24 may play an important role in negative cell growth control by functioning as an apoptotic effector of p53 tumor suppressor activities.  相似文献   

6.
7.
Mdm2 is a nuclear phosphoprotein which functions as a negative feedback regulator of the p53 tumor suppressor gene. In this study, we investigated the alteration of Mdm2 and p53 in three human cancer cell lines containing either a wild-type or mutant p53 gene after treatment with Adriamycin (doxorubicin, ADR), a DNA damaging agent. We found that human breast cancer MCF-7 cells containing wild-type p53 were much more susceptible to ADR compared to human breast cancer MDA-MB-231 and human prostate cancer Du-145 cells which contain mutant p53. ADR resulted in a significant dose-dependent accumulation of p53 protein in MCF-7 cells, whereas little or no influence was observed on p53 protein of the two mutant p53 cell lines. However, a significant down-regulation of Mdm2 at protein and mRNA levels was observed in these three cell lines following ADR treatment. Moreover, the decrease of Mdm2 was in both a dose- and time-dependent manner. It is interestingly noted that 5 μM is a critical dose for significant down-regulation of the Mdm2 protein. Selected proteasome inhibitors did not rescue the ADR-caused decline in the expression of Mdm2 protein. Therefore, our present results reveal that ADR can induce a down-regulation of Mdm2 via a p53-independent pathway in human cancer cells and the ubiquitin-proteasome degradation mechanism may not be involved in the decreased expression of Mdm2 protein.  相似文献   

8.
The tumor suppressor p53 gene product is an essential component of the cytotoxic pathway triggered by DNA-damaging stimuli such as chemotherapeutic agents and ionizing radiation. We previously demonstrated that adenovirus-mediated wild-type p53 gene transfer could enhance the cytotoxic actions of chemotherapeutic drugs both in vitro and in vivo; however, the molecular mechanism of this chemosensitization is still unclear. Cyclin D1 is a major regulator of the progression of cells into the proliferative stage of the cell cycle. Here we show that infection with an adenovirus vector expressing the wild-type p53 gene (Ad-p53) caused an increase in cyclin D1 protein levels in human colorectal cancer cell lines DLD-1 and SW620; treatment with the anti-cancer drug adriamycin, however, down-regulated their cyclin D1 protein expression in a dose-dependent manner. The suppression of cyclin D1 expression following adriamycin treatment could be blocked by simultaneous Ad-p53 infection. Furthermore, DLD-1 and SW620 cells transfected with the cyclin D1 expression construct displayed increased sensitivity to adriamycin compared to that of the vector-transfected control. Our results suggest that ectopic wild-type p53 gene transfer results in increased cyclin D1 expression and, consequently, sensitizes human colorectal cancer cells to chemotherapeutic agents.  相似文献   

9.
10.
Tumor suppressor genes are generally viewed as being recessive at the cellular level, so that mutation or loss of both tumor suppressor alleles is a prerequisite for tumor formation. The tumor suppressor gene, p53, is mutated in approximately 50% of human sporadic cancers and in an inherited cancer predisposition (Li-Fraumeni syndrome). We have analyzed the status of the wild-type p53 allele in tumors taken from p53-deficient heterozygous (p53+/-) mice. These mice inherit a single null p53 allele and develop tumors much earlier than those mice with two functional copies of wild-type p53. We present evidence that a high proportion of the tumors from the p53+/- mice retain an intact, functional, wild-type p53 allele. Unlike p53+/- tumors which lose their wild-type allele, the tumors which retain an intact p53 allele express p53 protein that induces apoptosis following gamma-irradiation, activates p21(WAF1/CIP1) and Mdm2 expression, represses PCNA expression (a negatively regulated target of wild-type p53), shows high levels of binding to oligonucleotides containing a wild-type p53 response element and prevents chromosomal instability as measured by comparative genomic hybridization. These results indicate that loss of both p53 alleles is not a prerequisite for tumor formation and that mere reduction in p53 levels may be sufficient to promote tumorigenesis.  相似文献   

11.
In tumors that retain wild-type p53, its tumor-suppressor function is often impaired as a result of the deregulation of HDM-2, which binds to p53 and targets it for proteasomal degradation. We have screened a chemical library and identified a small molecule named RITA (reactivation of p53 and induction of tumor cell apoptosis), which bound to p53 and induced its accumulation in tumor cells. RITA prevented p53-HDM-2 interaction in vitro and in vivo and affected p53 interaction with several negative regulators. RITA induced expression of p53 target genes and massive apoptosis in various tumor cells lines expressing wild-type p53. RITA suppressed the growth of human fibroblasts and lymphoblasts only upon oncogene expression and showed substantial p53-dependent antitumor effect in vivo. RITA may serve as a lead compound for the development of an anticancer drug that targets tumors with wild-type p53.  相似文献   

12.
Several signaling pathways that monitor the dynamic state of the cell converge on the tumor suppressor p53. The ability of p53 to process these signals and exert a dynamic downstream response in the form of cell cycle arrest and/or apoptosis is crucial for preventing tumor development. This p53 function is abrogated by p53 gene mutations leading to alteration of protein conformation. Hsp90 has been implicated in regulating both wild-type and mutant p53 conformations, and Hsp90 antagonists are effective for the therapy of some human tumors. Using cell lines that contain human tumor-derived temperature-sensitive p53 mutants we show that Hsp90 is required for both stabilization and reactivation of mutated p53 at the permissive temperature. A temperature decrease to 32 degrees C causes conversion to a protein conformation that is capable of inducing expression of MDM2, leading to reduction of reactivated p53 levels by negative feedback. Mutant reactivation is enhanced by simultaneous treatment with agents that stabilize the reactivated protein and is blocked by geldanamycin, a specific inhibitor of Hsp90 activity, indicating that Hsp90 antagonist therapy and therapies that act to reactivate mutant p53 will be incompatible. In contrast, Hsp90 is not required for maintaining wild-type p53 or for stabilizing wild-type p53 after treatment with chemotherapeutic agents, indicating that Hsp90 therapy might synergize with conventional therapies in patients with wild-type p53. Our data demonstrate the importance of the precise characterization of the interaction between p53 mutants and stress proteins, which may shed valuable information for fighting cancer via the p53 tumor suppressor pathway.  相似文献   

13.
14.
Sporadic human tumors and the hereditary cancer predisposition syndrome Li-Fraumeni are frequently associated with mutations in the p53 tumor suppressor gene that compromise its ability to function as a DNA damage checkpoint. A subset of Li-Fraumeni patients with wild-type p53 alleles have mutations in chk2/hcds1, one of the genes signaling the presence of DNA damage to the p53 protein. This suggests that p53 may be kept inactive in human cancer by mutations targeting DNA damage signaling pathways. Melanoma cells are highly radioresistant, yet they express wild-type p53 protein, raising the possibility of defects in the pathways that activate p53 in response to DNA damage. We have described a chk2/hcds1-independent DNA damage signaling pathway that targets Ser-376 within the COOH terminus of p53 for dephosphorylation and leads to increased p53 functional activity. We now report that in several human melanoma cell lines that express wild-type p53, the phosphorylation state of Ser-376 was not regulated by DNA damage. In these cell lines, neither the endogenous wild-type p53 protein nor high levels of ectopic wild-type p53 led to cell cycle arrest or apoptosis. Thus, defective activation of p53 in response to DNA damage may underlie the radioresistance of human melanoma cells.  相似文献   

15.
The constitutive activation of the Janus kinase 2 (JAK2) and mutation of the p53 tumor suppressor are both detected in human cancer. We examined the potential regulation of JAK2 phosphorylation by wild-type (wt) p53 in human ovarian cancer cell lines, Caov-3 and MDAH2774, which harbor mutant form of p53 tumor suppressor gene and high levels of phosphorylated JAK2. The wt p53 gene was re-introduced into the cells using an adenovirus vector. In addition to wt p53, mutant p53 22/23, mutant p53-175, and NCV (negative control virus) were introduced into the cells in the control groups. Expression of wt p53, but not that of p53-175 mutant, diminished JAK2 tyrosine phosphorylation in MDAH2774 and Caov-3 cell lines. Expression of wt p53 or p53 22/23 mutant did not cause a reduction in the phosphorylation of unrelated protein kinases, ERK1 and ERK2 (ERK1/2). The inhibition of JAK2 tyrosine phosphorylation can be reversed by tyrosine phosphatase inhibitor, sodium orthovanadate. Protein tyrosine phosphatase 1-B levels increased with introduction of wt p53 and may be involved in the dephosphorylation of JAK2. These findings present a possible p53-dependent cellular process of modulating JAK2 tyrosine phosphorylation in ovarian cancer cell lines.  相似文献   

16.
The promise and obstacle of p53 as a cancer therapeutic agent   总被引:1,自引:0,他引:1  
p53 is a tumor suppressor gene that is mutated in greater than 50% of human cancers. The action of p53 as a tumor suppressor involves inhibition of cell proliferation through cell cycle arrest and/or apoptosis. Loss of p53 function therefore allows the uncontrolled proliferation associated with cancerous cells. While design of most anti-cancer agents has focused on targeting and inactivating cancer promoting targets, such as oncogenes, recent attention has been given to restoring the lost activity of tumor suppressor genes. Because the loss of p53 function is so prevalent in human cancer, this protein is an ideal candidate for such therapy. Several gene therapeutic strategies have been employed in the attempt to restore p53 function to cancerous cells. These approaches include introduction of wild-type p53 into cells with mutant p53; the use of small molecules to stabilize mutant p53 in a wild-type, active conformation; and the introduction of agents to prevent degradation of p53 by proteins that normally target it. In addition, because mutant p53 has oncogenic gain of function activity, several approaches have been investigated to selectively target and kill cells harboring mutant p53. These include the introduction of mutant viruses that cause cell death only in cells with mutant p53 and the introduction of a gene that, in the absence of functional p53, produces a toxic product. Many obstacles remain to optimize these strategies for use in humans, but, despite these, restoration of p53 function is a promising anti-cancer therapeutic approach.  相似文献   

17.
Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.  相似文献   

18.
The simian virus 40 large tumor antigen (SV40 Tag) has been ascribed many functions critical to viral propagation, including binding to the mammalian tumor suppressor p53. Recent studies have demonstrated that SV40-transformed murine cells have functional p53. The status of p53 in SV40-immortalized human cells, however, has not been characterized. We have found that in response to ionizing radiation, p53-dependent p21 transactivation activity is present, albeit reduced, in SV40-immortalized cells and that this activity can be further reduced with either dominant negative p53 expression or higher SV40 Tag expression. Furthermore, overexpression of p53 in SV40-immortalized ataxia-telangiectasia (A-T) cells restores p53-dependent p21 induction to typical A-T levels. All SV40-immortalized cell lines exhibited an absence of G1 arrest. Moreover, all SV40-immortalized cell lines exhibited increased apoptosis relative to primary cells in response to ionizing radiation, suggesting that SV40 immortalization results in a unique phenotype with regard to DNA damage responses.  相似文献   

19.
20.
Inhibition of viral and cellular promoters by human wild-type p53.   总被引:20,自引:0,他引:20       下载免费PDF全文
M A Subler  D W Martin    S Deb 《Journal of virology》1992,66(8):4757-4762
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号