首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
测定了宁夏黄土丘陵区植被恢复近30年的天然草地和农地不同粒径团聚体的土壤养分含量、微生物生物量、呼吸特性和生态化学计量比等指标,探索黄土丘陵区植被恢复对不同粒径土壤团聚体的养分特性和微生物学性质的影响.结果表明: 微团聚体(粒径<0.25 mm)质量百分比、各粒径土壤团聚体养分(有机碳、全氮、速效钾)含量、C/N均表现为天然草地大于农地,其中1~2 mm粒径团聚体有机碳、全氮含量在天然草地和农地中均最高,C/N也较高,说明植被恢复能有效促进土壤团粒的形成,适宜养分积累和有机碳的汇集,且在1~2 mm粒径团聚体上表现最为突出;天然草地各粒径土壤团聚体微生物生物量(碳、氮)、基础呼吸强度均高于农地,而呼吸熵低于农地,可见植被恢复措施可有效提高各粒径土壤微生物生物量与活性,并使土壤生境趋于稳定;但由于养分特性的差异,不同粒径团聚体微生物特性对植被修复的响应存在差异,其中天然草地土壤1~2 mm粒径团聚体微生物生物量碳,<0.25、0.25~1、1~2 mm粒径团聚体微生物生物量氮,以及1~2、>5 mm粒径团聚体基础呼吸强度显著高于其他粒径,即上述粒径团聚体的微生物生物量和微生物活性在植被恢复过程中逐渐被改善.表明宁南山区植被恢复有效改善了土壤团聚体的肥力状况与结构特征,且1~2 mm粒径团聚体的改良效果最为突出.  相似文献   

2.
土壤微生物生物量在团聚体中的分布以及耕作影响   总被引:7,自引:1,他引:6  
陈智  蒋先军  罗红燕  李楠  李航 《生态学报》2008,28(12):5964-5969
了解土壤微生物在土壤结构体内部的分布对于预测相关的土壤生物化学过程具有重要意义。由于气候、土壤以及耕作的影响,该领域的研究结果存在很大的空间和时间变异,因此有待进行更多的在不同气候和土壤类型下的研究。首次报道亚热带紫色水稻土中微生物生物量在长期不同耕作方式的土壤中不同水稳性团聚体中的分布特征。结果表明微生物生物量在紫色水稻土水稳定性团聚体中的分布模式决定于土壤结构本身,而耕作方式的影响不显著;微生物生物量碳在不同粒级土壤团聚体中无显著性差异,微生物生物量氮与可溶性有机碳在0.25~0.053mm微团聚体中含量最高;垄作免耕显著提高土壤团聚体中的微生物生物量及可溶性有机碳含量,而对微生物生物量及可溶性有机碳在土壤团聚体中的分布模式无显著影响。  相似文献   

3.
Abstract Purple bacterial aggregates found in tidal pools of Great Sippewissett Salt Marsh (Falmouth, Cape Cod, MA) were investigated in order to elucidate the ecological significance of cell aggregation. Purple sulfur bacteria were the dominant microorganisms in the aggregates which also contained diatoms and a high number of small rod-shaped bacteria. Urea in concentrations of ≥ 1 M caused disintegration of the aggregates while proteolytic enzymes, surfactants or chaotropic agents did not exhibit this effect. This suggests that polysaccharides in the embedding slime matrix stabilize the aggregate structure. In addition cell surface hydrophobicity is involved in aggregate formation. The concentration of dissolved oxygen decreased rapidly below the surface of aggregates while sulfide was not detected. The apparent respiration rate in the aggregates was high when the purple sulfur bacteria contained intracellular sulfur globules. In the presence of DCMU, respiration remained light-inhibited. Light inhibition disappeared in the presence of KCN. These results demonstrated that respiration in the aggregates is due mainly to purple sulfur bacteria. The concentration of bacteriochlorophyll (Bchl) a in the aggregates (0.205 mg Bchl a cm−3) was much higher than in the pool sediments but comparable to concentrations in microbial mats of adjacent sand flats. Purple aggregates may therefore originate in the microbial mats rather than in the pools themselves. Rapid sedimentation and high respiration rates of Chromatiaceae in the aggregates would prevent the inhibition of Bchl synthesis if aggregates were lifted off the sediment and up into the oxic pool water by tidal currents.  相似文献   

4.
耕作方式对潮土土壤团聚体微生物群落结构的影响   总被引:1,自引:0,他引:1  
为探究不同耕作方式对潮土土壤团聚体微生物群落结构和多样性的影响,采用磷脂脂肪酸(PLFA)法测定了土壤团聚体中微生物群落。试验设置4个耕作处理,分别为旋耕+秸秆还田(RT)、深耕+秸秆还田(DP)、深松+秸秆还田(SS)和免耕+秸秆还田(NT)。结果表明:与RT相比,DP处理显著提高了原状土壤和>5 mm粒级土壤团聚体中真菌PLFAs量和真菌/细菌,为真菌的繁殖提供了有利条件,有助于土壤有机质的贮存,提高了土壤生态系统的缓冲能力;提高了5~2 mm粒级土壤团聚体中细菌PLFAs量,降低了土壤革兰氏阳性菌/革兰氏阴性菌,改善了土壤营养状况;提高了<0.25 mm粒级土壤团聚体中微生物丰富度指数。总的来说,深耕+秸秆还田(DP)对土壤团聚体细菌和真菌生物量有一定的提高作用,并且在一定程度上改善了土壤团聚体微生物群落结构,有利于增加土壤固碳能力和保持土壤微生物多样性。冗余分析结果表明,土壤团聚体总PLFAs量、细菌、革兰氏阴性菌和放线菌PLFAs量与土壤有机碳相关性较强,革兰氏阳性菌PLFAs量与总氮相关性较强。各处理较大粒级土壤团聚体微生物群落主要受碳氮比、含水量、pH值和团聚体质量分数的影响,较小粒级土壤团聚体微生物群落则主要受土壤有机碳和总氮的影响。  相似文献   

5.
土壤活性有机质及其与土壤质量的关系   总被引:86,自引:2,他引:86  
活性有机质是土壤的重要组成部分 ,主要包括溶解性有机碳、微生物生物量、轻组有机质。它在土壤中具有重要作用 :(1)可以表征土壤物质循环特征、评价土壤质量 ,可以作为土壤潜在生产力以及由土壤管理措施引起土壤有机质变化的早期指标 ;(2 )在养分周转中起重要作用 ,是植物的养分库 ,可以提供植物所需要的养分如氮、磷、硫等 ;(3)能稳定土壤结构 ,对维持团粒结构稳定性有重要作用。从土壤养分、土壤物理、化学性质方面讨论了活性有机质与土壤质量的关系。土壤中的溶解性有机碳、微生物生物量碳氮含量与土壤有机碳、全氮和碱解氮等物质的含量呈正相关。活性有机质受土壤质地、含水量、温度等因素影响 ,与土壤酸碱度、阳离子交换量等也有关。土壤微生物生物量碳和微生物量 C/有机碳比与土壤粘粒、粉粒含量呈正相关、与砂粒含量呈负相关  相似文献   

6.
Ding LJ  Xiao HA  Wu JS  Ge TD 《应用生态学报》2010,21(7):1759-1765
为了进一步探明红壤旱土磷素微生物固持的机理,采用室内模拟培养试验研究了微生物类群对红壤旱土团聚体(0.2~2mm)磷素转化的作用.结果表明:在培养90d期间,添加稻草处理能显著提高红壤旱土团聚体的微生物生物量碳、生物量磷、提取磷(Olsen法)和有机磷的含量.在培养前期(5~30d),与添加稻草处理比较,稻草+真菌抑制剂(放线菌酮)、稻草+细菌抑制剂(四环素+链霉素硫酸盐)处理团聚体微生物生物量碳含量分别降低10.5%~31.8%和6.8%~11.6%,前者的降低幅度显著大于后者(P0.01),此后加入抑菌剂处理团聚体微生物生物量碳基本保持稳定.添加细菌抑制剂处理团聚体微生物生物量磷含量在培养5~20d期间比加真菌抑制剂处理高10.0%~28.8%,差异显著(P0.01).表明真菌和细菌均参与红壤旱土团聚体磷素的固持,但真菌的作用明显大于细菌.  相似文献   

7.
Soil structure depends on the association between mineral soil particles (sand, silt, and clay) and organic matter, in which aggregates of different size and stability are formed. Although the chemistry of organic materials, total microbial biomass, and different enzyme activities in different soil particle size fractions have been well studied, little information is available on the structure of microbial populations in microhabitats. In this study, topsoil samples of different fertilizer treatments of a long-term field experiment were analyzed. Size fractions of 200 to 63 microm (fine sand fraction), 63 to 2 microm (silt fraction), and 2 to 0.1 microm (clay fraction) were obtained by a combination of low-energy sonication, wet sieving, and repeated centrifugation. Terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes were used to compare bacterial community structures in different particle size fractions. The microbial community structure was significantly affected by particle size, yielding higher diversity of microbes in small size fractions than in coarse size fractions. The higher biomass previously found in silt and clay fractions could be attributed to higher diversity rather than to better colonization of particular species. Low nutrient availability, protozoan grazing, and competition with fungal organisms may have been responsible for reduced diversities in larger size fractions. Furthermore, larger particle sizes were dominated by alpha-Proteobacteria, whereas high abundance and diversity of bacteria belonging to the Holophaga/Acidobacterium division were found in smaller size fractions. Although very contrasting organic amendments (green manure, animal manure, sewage sludge, and peat) were examined, our results demonstrated that the bacterial community structure was affected to a greater extent by the particle size fraction than by the kind of fertilizer applied. Therefore, our results demonstrate specific microbe-particle associations that are affected to only a small extent by external factors.  相似文献   

8.
The partitioning of soil respiration rates into the component processes of rhizospheric respiration (because of live roots and those microorganisms that subsist on root exudations) and heterotrophic respiration (because of decomposer microorganisms that subsist on the oxidation of soil organic matter) is difficult to accomplish through experimental observation. In order to minimize disturbance to the soil and maximize preservation of the natural relationships among roots, rhizospheric microorganisms, and decomposers, we conducted a girdling experiment in a subalpine forest dominated by lodgepole pine trees. In two separate years, we girdled trees in small forest plots (5–7 m in diameter) and trenched around the plots to sever invading roots in order to experimentally stop the transport of photosynthate from needles to roots, and eliminate rhizospheric respiration. Soil respiration rates in plots with trees girdled over 1 year prior to measurement were higher than those in plots with trees girdled 2–3 months prior to measurement. These results suggest that any stimulation of respiration because of the experimental artifact of fine root death and addition of labile carbon to the pool of decomposer substrates is slow, and occurs beyond the first growing season after girdling. Compared with control plots with nongirdled trees, soil respiration rates in plots with girdled trees were reduced by 31–44% at the mid‐summer respiratory maximum. An extreme drought during one of the 2 years used for observations caused greater reductions in the heterotrophic component of soil respiration compared with the rhizospheric component. In control plots, we observed a pulse in K2SO4‐extractable carbon during the spring snowmelt period, which was absent in plots with girdled trees. In control plots, soil microbial biomass increased from spring to summer, coincident with a seasonal increase in the rhizospheric component of soil respiration. In plots with girdled trees, the seasonal increase in microbial biomass was lower than in control plots. These results suggest that the observed seasonal increase in rhizospheric respiration rate in control plots was because of an increase in rhizospheric microbial biomass following ‘soil priming’ by a spring‐time pulse in dissolved organic carbon. Winter‐time, beneath‐snow microbial biomass was relatively high in control plots. Soil sucrose concentrations were approximately eight times higher during winter than during spring or summer, possibly being derived from the mechanical damage of shallow roots that use sucrose as protection against low‐temperature extremes. The winter‐time sucrose pulse was not observed in plots with girdled trees. The results of this study demonstrate that (1) the rhizospheric component of soil respiration rate at this site is significant in magnitude, (2) the heterotrophic component of soil respiration rate is more susceptible to seasonal drought than the rhizospheric component, and (3) the trees in this ecosystem exert a major control over soil carbon dynamics by ‘priming’ the soil with sugar exudates during the late‐spring snowmelt period and releasing high concentrations of sucrose to the soil during winter.  相似文献   

9.
选择黄土高原7种典型植物的根际与非根际土壤为研究对象,对土壤的养分含量、微生物生物量碳、氮、磷和基础呼吸的影响进行了初步研究。结果表明,7种不同植物根际土壤与非根际土壤的养分含量、微生物生物量和基础呼吸均存在显著差异;除冷蒿的土壤微生物生物量磷以外,其他各种植物的根际土壤的养分含量、微生物生物量和基础呼吸均比非根际土壤的高;土壤有机碳、全氮与土壤微生物生物量碳、氮及基础呼吸之间均具有极显著或显著相关关系,表明了土壤微生物生物量碳、氮可以作为判断土壤肥力状况的生物学指标,同时也可为提高土壤肥力水平和土壤培肥效果提供依据。  相似文献   

10.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

11.
嫁接对铜胁迫下黄瓜根际土壤微生物特性和酶活性的影响   总被引:2,自引:0,他引:2  
采用盆栽试验方法,研究了嫁接(以黑籽南瓜为砧木)对铜胁迫下黄瓜根际土壤微生物生物量、微生物种群数量和土壤酶活性的影响.结果表明: 铜胁迫下黄瓜根际土壤微生物生物量碳(MBC)和微生物生物量氮(MBN)含量显著下降,基础呼吸和代谢熵显著上升,但嫁接黄瓜根际土壤MBC和MBN含量显著高于自根黄瓜,而基础呼吸和代谢熵则显著低于自根黄瓜.铜胁迫下,根际土壤放线菌和自生固氮菌的数量显著下降,真菌数量显著上升,而细菌数量变化不显著;嫁接黄瓜根系土壤细菌、放线菌、自生固氮菌的数量显著高于自根黄瓜,而真菌数量显著低于自根黄瓜.嫁接黄瓜根际土壤脲酶、磷酸酶、蔗糖酶、过氧化氢酶活性在铜胁迫下显著高于自根黄瓜.试验结果证明嫁接使铜胁迫下黄瓜根际土壤微生物环境和酶活性得到了改善和提高,从而提高了黄瓜植株对铜胁迫的抵抗力.  相似文献   

12.
26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响   总被引:44,自引:0,他引:44  
研究长期小麦连作施肥条件下土壤微生物量碳、氮,土壤呼吸的变化及其与土壤养分的相关性。以陕西长武长期定位试验为平台,应用氯仿熏蒸-K2SO4提取法、碱液吸收法和化学分析法分析了长达26a不同施肥处理农田土壤微生物量碳、微生物量氮和土壤呼吸之间的差异及其调控土壤肥力的作用。长期施肥及种植作物,均能提高土壤微生物量碳、氮含量,尤其是施用有机肥,土壤微生物量碳、氮含量高于单施无机肥的处理,土壤呼吸量也提高15.91%—75.73%,而施用无机肥对于土壤呼吸无促进作用。土壤微生物生物量碳氮、土壤呼吸与土壤有机质、全氮呈极显著相关。长期有机无机肥配施可以提高土壤微生物量碳氮、土壤呼吸,氮磷肥与厩肥配施对提高土壤肥力效果最好。微生物量碳氮及土壤呼吸可以反映土壤质量的变化,作为评价土壤肥力的生物学指标。  相似文献   

13.
酸性矿山废水污染的水稻田土壤中重金属的微生物学效应   总被引:20,自引:1,他引:20  
采样调查了广东大宝山地区受酸性采矿废水长期污染的亚热带水稻田的土壤理化性质 ,重金属 Cu、Pb、Zn、Cd的全量及其 DTPA浸提量 ,以及微生物生物量及其呼吸活性等指标。利用主成分和逐步回归分析了影响土壤重金属的有效性及其微生物学效应的因素。结果表明 :土壤高含硫 ,强酸性 ,有机碳、全氮较低 ,4种金属的全量普遍超标。DTPA可提取态金属含量较高 ,不仅与其全量呈显著正相关 ,而且与土壤酸度和粘粒含量正相关 ,和 Mn含量负相关。过量的金属显著降低了土壤微生物生物量 C、N、微生物商、生物量 N/全 N比 ,并抑制了微生物呼吸强度和对有机碳的矿化率 ,导致了土壤 C/N比的升高。同时 ,金属对微生物群落及生理代谢指标 ,如微生物生物量 C/N比和代谢商的影响不显著。 DTPA可提取态金属 ,特别是 DTPA- Cu是导致微生物生物量和活性指标变化的主要因素。以有机碳 (或全氮 )为基数的复合微生物指标降低了土壤性质差异造成的干扰 ,较单一指标更能准确指示微生物对金属胁迫的反应。土壤硫没有对金属有效性和微生物指标产生明显影响 ,但其氧化过程可能引起酸化和金属离子的释放  相似文献   

14.
Previous studies have shown that the soil enzyme activity and microbial respiration intensities varied in two different types of tidal wetland in Chongming Dongtan, the first a sandy soil in a scouring bank with Phragmites australis and the second a saline-alkali clay soil in silting bank with P. australis/Spartina alterniflora/Scirpus mariqueter, resulting in different organic carbon reservation capabilities; however, their microbial biomass did not differ significantly. To clarify the microbial mechanism that explains the variability of soil respiration among different wetland areas, the community structure and abundance of soil microorganisms in different types of wetland were investigated using denaturing gradient gel electrophoresis (DGGE) plus real-time quantitative polymerase chain reaction (PCR) technologies, and the relationship between soil environmental factors and the microbial community structure and the soil respiration intensity was elucidated. The results revealed that the soil microbial diversity and community structure differed between the two typical wetland areas. The common population was uncultured bacterium in both areas, and the most abundant community was α-, β-, γ-Proteobacteria, which play an important role in the cycling of carbon in soil. However, the abundance of α-Proteobacteria in Area A was 18.2% of that in Area B (P <0.05), while the β-Proteobacteria in Area A was 3.23 times higher than that in Area B (P <0.05). In addition, one cellulose-degrading bacteria, uncultured Bacilli, was detected in Area A. PCA (Principal component analysis) revealed that γ-Proteobacteria and β-Proteobacteria had the greatest impact on soil respiration intensity. Both soil water content and salinity depressed the propagation of β-Proteobacteria. Considering the similar microbial biomass and abundance of γ-Proteobacteria between the two areas, the lower level of β-Proteobacteria, uncultured Bacilli bacterium in Area B might be important factors involved in the lower soil respiration, and hence the higher soil organic carbon reservation capability in Area B.  相似文献   

15.
Summary Sucrose-amended soil aggregates incubated at 15, 25 and 35°C exhibited quantitative and qualitative differences in microbial ecology. Numbers of bacteria and fungi showed a faster increase to the maximum level and a faster decrease with prolonged incubation the higher the temperature. Soil yeasts developed rapidly and extensively in aggregates incubated at 15 and 25 but not at 35°C.The fungal flora that developed on the aggregates varied with temperature: (a)M. silvaticus and anAlternaria species were the predominant primary flora at 15 and 25°C; (b)Sclerotium andPseudogymnoascus species developed in abundance in the later stages of incubation at 15 but were rare at 25°C; and (c)R. rhizopodiformis andA. fumigatus were virtually the only fungi observed on aggregates incubated at 35°C.Direct microscopic examination provided an estimate of the extent and type of fungal development that occurred on the aggregates. In general, dilution plate counts reflected accurately the growth and sporulation of the primary fungal flora of high sporulating capacity. But because spores of the primary flora remained viable in the soil and dominated the dilution plates long after the mycelia of these fungi had apparently decomposed, the plate counts provided little direct information regarding the development of the secondary fungal flora on the aggregates.  相似文献   

16.
洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系   总被引:37,自引:0,他引:37  
以洞庭湖3类典型湿地的8个土壤剖面为代表,研究了土壤碳、氮、磷,微生物量碳、氮、磷和土壤物理性状的分布特征.结果表明,土壤表层有机碳含量为19.63~50.20 g·kg-1,微生物量碳为424.63~1 597.36 mg·kg-1,微生物量碳占有机碳的比例为3.17%~4.82%;土壤表层全氮1.85~4.45 g·kg-1,微生物量氮5.90~259.47 mg·kg-1,微生物量氮占全氮的比例3.13%~6.42%;土壤表层微生物量磷含量顺序为:湖草洲滩地(200.99 mg·kg-1)>垦殖水田(163.27 mg·kg-1)>芦苇洲滩地(24.16 mg·kg-1),微生物量磷占全磷的比例为1.09%~11.20%;土壤表层容重0.65~1.04 g·cm-3;土壤表层粘粒(<0.001mm)26.24%~39.48%.土壤表层有机碳、全氮、微生物量氮、微生物量磷的含量,湖草洲滩地>垦殖水田>芦苇洲滩地.土壤表层微生物量碳,垦殖水田和湖草洲滩地接近,而大于芦苇湿地;土壤表层容重,芦苇洲滩地>垦殖水田>湖草洲滩地;土壤表层<0.01 mm、<0.001 mm粘粒,湖草洲滩地、芦苇洲滩地>垦殖水田.湿地土壤剖面中有机碳、微生物量碳、全氮、微生物量氮、微生物量磷、容重以及微生物量碳占有机碳的比例、微生物量氮占全氮的比例、微生物量磷占全磷的比例均随深度的增加而降低,至一定深度稳定,而土壤全磷在剖面上下的差异很小.湿地土壤微生物量碳、氮、磷之间呈极显著的正相关关系;土壤容重与有机碳、全氮、微生物量碳、氮、磷之间呈极显著指数负相关关系.湿地土壤<0.001 mm粘粒与有机碳、全氮、微生物量碳、氮、磷含量呈极显著对数正相关关系.  相似文献   

17.
'Clay hutches': a novel interaction between bacteria and clay minerals   总被引:3,自引:0,他引:3  
Biofilm formation on a low-energy substratum floating on the surface of a water column overlying a polychlorinated biphenyl (PCB)-contaminated sandy clay soil was followed by light and electron microscopy. The biofilms that developed consisted of a dense lawn of clay aggregates, each one of which contained one or more bacteria, phyllosilicates and grains of iron oxide material, all held together by bacterial extracellular polysaccharides (EPS). The clay leaflets were arranged in the form of 'houses of cards' and gave the aggregates the appearance of 'hutches' housing the bacteria. Interestingly, although the soil is poor in carbon, and the weakly bioavailable PCBs constitute the principal source of carbon in this system, the bacteria contained electron-transparent structures presumed to be carbon storage granules. These, and the EPS material present in the hutches, indicate that carbon is not limiting in this system and, as PCBs have been found associated with the clay mineral fraction of the floating substratum, the clay particles may serve as carbon shuttles. The interesting possibilities that the 'clay hutches' may represent a 'soil microhabitat', a 'minimal nutritional sphere' and an 'effective survival unit' for autochthonous bacteria are noted. The formation of clay hutches by bacteria would seem to merit further investigation, particularly regarding their roles in bacterial processes in soil and in geological processes.  相似文献   

18.
氧化铝废渣(赤泥)堆场生态修复的关键是赤泥土壤化。运用空间代替时间的方法,在未采取人工修复措施的赤泥堆场采集具有时间序列特征的赤泥样品,通过测定其理化生化指标及微生物群落结构变化,研究赤泥的自然成土过程及其微生物驱动机制。结果表明: 随赤泥泥龄的增加,其物理指标孔隙度、水稳性团聚体含量、团聚体平均重量直径提升,容重降低;化学指标pH值、电导率、酸中和能力和交换性钠饱和度降低;生化指标有机碳、总氮、有效态磷、微生物生物量碳、土壤基础呼吸提升,代谢熵降低。微生物Shannon多样性指数增加,群落结构由产氧光合细菌蓝细菌门、不产氧光合细菌绿菌门和绿弯菌门占据绝对优势转变为变形菌门、放线菌门和厚壁菌门占据优势地位,富营养细菌与贫营养细菌丰度比值明显增加。微观形态分析表明,微生物及其代谢产物通过对赤泥颗粒的吸附、链接、缠绕及包裹形成微生物-赤泥聚合体。在自然堆置过程中赤泥自发地由贫营养的极端生境向土壤生境转变,微生物通过提升营养水平、降低盐碱度、改善质地结构等途径参与赤泥的自然成土过程。  相似文献   

19.
Effects of soil management on soil characteristics were investigated on the rhizosphere (RPP) and the nonrhizosphere (NRPP) soil of a re-grass vertisol underDigitaria decumbens and in the soil under continuous cultivation (CC). A low energy technique allowed to separate eight size and density fractions, including macro- and micro-aggregates while preserving soil bacteria. Organic C and N, microbial biomass C and the number of total bacteria (AODC) and ofAzospirillum brasilense and their distribution were determined in soil fractions isolated from the CC, NRPP and RPP soils. Soil macroaggregates (>2000 m) were similarly predominant in the NRPP and RPP soils when the dispersible clay size fraction (<2 m) respresented more than 25% of the CC soil mass. The main increase of C content in RPP originated from the macroaggregates (> 2000 m) and from the root fraction, not from the finer separates. The proportion of organic C as microbial biomass C revealed the low turnover of microbial C in the PP situations, especially in the clay size fraction of the NRPP soil. A common shift of AODC toward the finer separates from planted soils (CC and RPP) revealed the influence of living plants on the distribution of soil bacteria. The relative abundance ofA. brasilense showed the presence of the active roots ofDigitaria in the macroaggregates and their contact with the dispersible clay size fraction of the rhizosphere soil.  相似文献   

20.
老化和风干处理对蚓粪微生物学性质和结构稳定性的影响   总被引:1,自引:0,他引:1  
朱玲  李辉信  刘宾  陈小云  胡锋 《生态学报》2007,27(1):120-127
蚓粪水稳性团聚体含量是结构稳定性表征之一,蚓粪中水稳性团聚体含量与其微生物学性质是紧密联系的,并且受到老化时问和有机质等因素的影响。国内将蚓粪水稳性团聚体含量与其微生物学性质联系,并结合施用不同有机物处理的研究很少见报道。研究通过室内短期培养试验,研究了在不同碳氮比有机物施用下蚓粪老化和风干处理对其微生物生物量、微生物活性和结构稳定性变化的影响。研究结果表明蚓粪经过老化处理后真菌数量、微生物生物量碳和微生物活性都显著降低。不同有机物的施用对蚓粪微生物学性质的影响主要表现在施用牛粪的处理中蚓粪细菌数量高于施用秸秆的处理,真菌数量相反。新鲜蚓粪经过老化处理后总的水稳性团聚体含量(〉0.053mm)增加,主要表现在水稳性大型大团聚体(〉2mm)含量增加,且在施用牛粪的处理中达到显著,可能是与牛粪比秸秆能分解产生更多的粘结物质有关。蚓粪的风于处理也显著增加各个处理中总水稳性团聚体含量,且风干后蚓粪中水稳性团聚体主要以微团聚体(0.25~0.053mm)形式存在。施用秸秆的处理中,新鲜蚓粪0.25~0.053mm粒级的水稳性团聚体含量显著高于施用牛粪的处理。经风干后,施用秸秆的处理0.25~0.053mm的水稳性团聚体含量显著低于施用牛粪的处理,而水稳性大型大团聚体含量显著高于施用牛粪的处理。蚓粪的不同粒级水稳性团聚体含量和蚓粪的生物学性质之间存在良好的相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号