首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
Leucine-rich repeat receptor-like kinases (LRR RLKs) comprise the largest group within the plant receptor-like kinase (RLK) superfamily, and the Arabidopsis genome alone contains over 200 LRR RLK genes. Although there is clear evidence for diverse roles played by individual LRR RLK genes in Arabidopsis growth and development, the evolutionary mechanism for this functional diversification is currently unclear. In this study, we focused on the LRRII RLK subfamily to investigate the molecular mechanisms that might have led to the functional differentiation of Arabidopsis LRR RLK genes. Phylogenetic analysis of 14 genes in this subfamily revealed three well-supported groups (I, II, and III). RT-PCR analysis did not find many qualitative differences in expression among these 14 genes in various Arabidopsis tissues, suggesting that evolution of regulatory sequences did not play a major role in their functional divergence. We analyzed substitution patterns in the predicted ligand-binding regions of these genes to examine if positive selection has acted to produce novel ligand-binding specificities, using the nonsynonymous/synonymous rate ratio (d N/d S) as an indicator of selective pressure. Estimates of d N/d S ratios from multiple methods indicate that nonsynonymous substitutions accumulated during divergence of the three lineages. Positive selection is likely to have occurred along the lineages ancestral to groups II and III. We suggest that positive selection on the ligand-binding sites of LRRII RLKs promoted diversification of ligand-binding specificities and thus contributed to the functional differentiation of Arabidopsis LRRII RLK genes during evolution. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

2.
Full-genome analysis of resistance gene homologues in rice   总被引:18,自引:0,他引:18  
The availability of the rice genome sequence enabled the global characterization of nucleotide-binding site (NBS)–leucine-rich repeat (LRR) genes, the largest class of plant disease resistance genes. The rice genome carries approximately 500 NBS–LRR genes that are very similar to the non-Toll/interleukin-1 receptor homology region (TIR) class (class 2) genes of Arabidopsis but none that are homologous to the TIR class genes. Over 100 of these genes were predicted to be pseudogenes in the rice cultivar Nipponbare, but some of these are functional in other rice lines. Over 80 other NBS-encoding genes were identified that belonged to four different classes, only two of which are present in dicotyledonous plant sequences present in databases. Map positions of the identified genes show that these genes occur in clusters, many of which included members from distantly related groups. Members of phylogenetic subgroups of the class 2 NBS–LRR genes mapped to as many as ten different chromosomes. The patterns of duplication of the NBS–LRR genes indicate that they were duplicated by many independent genetic events that have occurred continuously through the expansion of the NBS–LRR superfamily and the evolution of the modern rice genome. Genetic events, such as inversions, that inhibit the ability of recently duplicated genes to recombine promote the divergence of their sequences by inhibiting concerted evolution.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Leucine-rich repeat (LRR) receptor-like kinases (RLKs), evolutionarily related LRR receptor-like proteins (RLPs) and receptor-like cytoplasmic kinases (RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata (Arabidopsis), Lotus japonicus, and Medicago truncatula (Legumes), Oryza sativa ssp. japonica, and O. sativa ssp. indica (Rice), we find that LRR RLKs comprise the largest group of these LRR-related subfamilies, while the related RLCKs represent the smal est group. In addition, comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies. Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage-specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species-specific duplication in the two Arabidopsis species and originated from older Arabidopsis-specific or rosid-specific duplications. We discuss potential pitfal s related to functional prediction for genes that have undergone frequent turnover (duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships wil likely outperform that based on sequence similarity alone.  相似文献   

4.
Receptor-like kinases (RLKs) belong to the large RLK/Pelle gene family, and it is known that the Arabidopsis thaliana genome contains >600 such members, which play important roles in plant growth, development, and defense responses. Surprisingly, we found that rice (Oryza sativa) has nearly twice as many RLK/Pelle members as Arabidopsis does, and it is not simply a consequence of a larger predicted gene number in rice. From the inferred phylogeny of all Arabidopsis and rice RLK/Pelle members, we estimated that the common ancestor of Arabidopsis and rice had >440 RLK/Pelles and that large-scale expansions of certain RLK/Pelle members and fusions of novel domains have occurred in both the Arabidopsis and rice lineages since their divergence. In addition, the extracellular domains have higher nonsynonymous substitution rates than the intracellular domains, consistent with the role of extracellular domains in sensing diverse signals. The lineage-specific expansions in Arabidopsis can be attributed to both tandem and large-scale duplications, whereas tandem duplication seems to be the major mechanism for recent expansions in rice. Interestingly, although the RLKs that are involved in development seem to have rarely been duplicated after the Arabidopsis-rice split, those that are involved in defense/disease resistance apparently have undergone many duplication events. These findings led us to hypothesize that most of the recent expansions of the RLK/Pelle family have involved defense/resistance-related genes.  相似文献   

5.
Calcium serves as a second messenger in various signal transduction pathways in plants. CBL-interacting protein kinases (CIPKs), which have a variety of functions, are involved in calcium signal transduction. Previous, the studies on CIPK family members focused on Arabidopsis and rice. Here, we present a comparative genomic analysis of the CIPK gene family in Arabidopsis and poplar, a model tree species. Twenty-seven potential CIPKs were identified from poplar using genome-wide analysis. Like the CIPK gene family from Arabidopsis, CIPK genes from poplar were also divided into intron-free and intron-harboring groups. In the intron-harboring group, the intron distribution of CIPKs is rather conserved during the genome evolutionary process. Many homologous gene pairs were found in the CIPK gene family, indicating duplication events might contribute to the amplification of this gene family. The phylogenetic comparison of CIPKs in combination with intron distribution analysis revealed that CIPK genes from both Arabidopsis and poplar might have an ancient origin, which formed earlier than the separation of these two eudicot species. Our genomic and bioinformatic analysis will provide an important foundation for further functional dissection of the CBL-CIPK signaling network in poplars. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
A comprehensive analysis of duplication and gene conversion for 7394 Caenorhabditis elegans genes (about half the expected total for the genome) is presented. Of the genes examined, 40% are involved in duplicated gene pairs. Intrachromosomal or cis gene duplications occur approximately two times more often than expected. In general the closer the members of duplicated gene pairs are, the more likely it is that gene orientation is conserved. Gene conversion events are detectable between only 2% of the duplicated pairs. Even given the excesses of cis duplications, there is an excess of gene conversion events between cis duplicated pairs on every chromosome except the X chromosome. The relative rates of cis and trans gene conversion and the negative correlation between conversion frequency and DNA sequence divergence for unconverted regions of converted pairs are consistent with previous experimental studies in yeast. Three recent, regional duplications, each spanning three genes are described. All three have already undergone substantial deletions spanning hundreds of base pairs. The relative rates of duplication and deletion may contribute to the compactness of the C. elegans genome. Received: 30 July 1998 / Accepted: 12 October 1998  相似文献   

8.
The Arabidopsis thaliana genome sequence provides a catalogue of reference genes that can be used for comparative analysis of other species thereby facilitating map-based cloning in economically important crops. We made use of a coffee bacterial artificial chromosome (BAC) contig linked to the SH3 leaf rust resistance gene to assess microsynteny between coffee (Coffea arabica L.) and Arabidopsis. Microsynteny was revealed and the matching counterparts to C. arabica contigs were seen to be scattered throughout four different syntenic segments of Arabidopsis on chromosomes (Ath) I, III, IV and V. Coffee BAC filter hybridizations were performed using coffee putative conserved orthologous sequences to Arabidopsis predicted genes located on the different Arabidopsis syntenic regions. The coffee BAC contig related to the SH3 region was successfully consolidated and later on validated by fingerprinting. Furthermore, the anchoring markers appeared in same order on the coffee BAC contigs and in all Arabidopsis segments with the exception of a single inversion on AtIII and AtIV Arabidopsis segments. However, the SH3 coffee region appears to be closer to the ancestral genome segment (before the divergence of Arabidopsis and coffee) than any of the duplicated counterparts in the present-day Arabidopsis genome. The genome duplication events at the origin of its Arabidopsis counterparts occurred most probably after the separation (i.e. 94 million years ago) of Euasterid (Coffee) and Eurosid (Arabidopsis).  相似文献   

9.
Comparative mapping between model plant species for which the complete genome sequence is known and crop species has been suggested as a new strategy for the isolation of agronomically valuable genes. In this study, we tested whether comparative mapping between Arabidopsisand maize of a small region (754 kb) surrounding the DREB1A gene in Arabidopsis could lead to the identification of an orthologous region in maize containing the DREB1A homologue. The genomic sequence information available for Arabidopsis allowed for the selection of conserved, low-copy genes that were used for the identification of maize homologues in a large EST database. In total, 17 maize homologues were mapped. A second BLAST comparison of these genes to the recently completed Arabidopsis sequence revealed that 15 homologues are likely to be orthologous as the highest similarity score was obtained either with the original Arabidopsis gene or with a highly similar Arabidopsis gene localized on a duplication of the investigated region on chromosome 5. The map position of these genes showed a significant degree of orthology with the Arabidopsis region. Nevertheless, extensive duplications and rearrangements in the Arabidopsisand maize genomes as well as the evolutionary distance between Arabidopsis and maize make it unlikely that orthology and collinearity between these two species are sufficient to aid gene prediction and cloning in maize.  相似文献   

10.
In plants, the two-component systems (TCSs) play important roles in regulating diverse biological processes, including responses to environmental stress stimuli. Within the soybean genome, the TCSs consist of at least 21 histidine kinases, 13 authentic and pseudo-phosphotransfers and 18 type-A, 15 type-B, 3 type-C and 11 pseudo-response regulator proteins. Structural and phylogenetic analyses of soybean TCS members with their Arabidopsis and rice counterparts revealed similar architecture of their TCSs. We identified a large number of closely homologous soybean TCS genes, which likely resulted from genome duplication. Additionally, we analysed tissue-specific expression profiles of those TCS genes, whose data are available from public resources. To predict the putative regulatory functions of soybean TCS members, with special emphasis on stress-responsive functions, we performed comparative analyses from all the TCS members of soybean, Arabidopsis and rice and coupled these data with annotations of known abiotic stress-responsive cis-elements in the promoter region of each soybean TCS gene. Our study provides insights into the architecture and a solid foundation for further functional characterization of soybean TCS elements. In addition, we provide a new resource for studying the conservation and divergence among the TCSs within plant species and/or between plants and other organisms.  相似文献   

11.
Prokaryotes and eukaryotes respond to various environmental stimuli using the two-component system (TCS). Essentially, it consists of membrane-bound histidine kinase (HK) which senses the stimuli and further transfers the signal to the response regulator, which in turn, regulates expression of various target genes. Recently, sequence-based genome wide analysis has been carried out in Arabidopsis and rice to identify all the putative members of TCS family. One of the members of this family i.e. AtHK1, (a putative osmosensor, hybrid-type sensory histidine kinase) is known to interact with AtHPt1 (phosphotransfer proteins) in Arabidopsis. Based on predicted rice interactome network (PRIN), the ortholog of AtHK1 in rice, OsHK3b, was found to be interacting with OsHPt2. The analysis of amino acid sequence of AtHK1 showed the presence of transmitter domain (TD) and receiver domain (RD), while OsHK3b showed presence of three conserved domains namely CHASE (signaling domain), TD, and RD. In order to elaborate on structural details of functional domains of hybrid-type HK and phosphotransfer proteins in both these genera, we have modeled them using homology modeling approach. The structural motifs present in various functional domains of the orthologous proteins were found to be highly conserved. Binding analysis of the RD domain of these sensory proteins in Arabidopsis and rice revealed the role of various residues such as histidine in HPt protein which are essential for their interaction.  相似文献   

12.
Using pairs of degenerate primers, we conducted a polymerase chain reaction to amplify the partial R2R3 domains of a majority of the R2R3-MYB family genes from Fagus crenata and identified a total of 85 independent gene fragments. By phylogenetic analysis of the deduced amino acid sequences, we found that many of the beech genes clustered with members from Arabidopsis, suggesting that these members represent beech orthologs of Arabidopsis. Some of the orthologous relationships became more evident when the complete gene structures were compared. Further, a large number of genes formed an additional and expanding cluster, independent from the other subgroups. These members were further compared with the Populus and Vitis family genes. In the epidermal cell fate clade, expansion of the beech family genes was comparable with those of the Populus and Vitis families, but the number of genes present in every subclade fluctuated extensively. Beech genes were abundant in the general flavonoid pathway regulation and TT2-related subclades; no beech gene was included in the anthocyanin-related subclade. Further analysis of the newly amplified regulatory genes to elucidate their functions may clarify the role of these genes in the evolution of plant species.  相似文献   

13.
Phylogenomic Analysis of the PEBP Gene Family in Cereals   总被引:1,自引:0,他引:1  
The TFL1 and FT genes, which are key genes in the control of flowering time in Arabidopsis thaliana, belong to a small multigene family characterized by a specific phosphatidylethanolamine-binding protein domain, termed the PEBP gene family. Several PEBP genes are found in dicots and monocots, and act on the control of flowering time. We investigated the evolution of the PEBP gene family in cereals. First, taking advantage of the complete rice genome sequence and EST databases, we found 19 PEBP genes in this species, 6 of which were not previously described. Ten genes correspond to five pairs of paralogs mapped on known duplicated regions of the rice genome. Phylogenetic analysis of Arabidopsis and rice genes indicates that the PEBP gene family consists of three main homology classes (the so-called TFL1-LIKE, MFT-LIKE, and FT-LIKE subfamilies), in which gene duplication and/or loss occurred independently in Arabidopsis and rice. Second, phylogenetic analyses of genomic and EST sequences from five cereal species indicate that the three subfamilies of PEBP genes have been conserved in cereals. The tree structure suggests that the ancestral grass genome had at least two MFT-like genes, two TFL1-like genes, and eight FT-like genes. A phylogenomic approach leads to some hypotheses about conservation of gene function within the subfamilies. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

14.
Gene duplication followed by acquisition of specific targeting information and dual targeting were evolutionary strategies enabling organelles to cope with overlapping functions. We examined the evolutionary trend of dual-targeted single-gene products in Arabidopsis and rice genomes. The number of paralogous proteins encoded by gene families and the dual-targeted orthologous proteins were analysed. The number of dual-targeted proteins and the corresponding gene-family sizes were similar in Arabidopsis and rice irrespective of genome sizes. We show that dual targeting of methionine aminopeptidase, monodehydroascorbate reductase, glutamyl-tRNA synthetase, and tyrosyl-tRNA synthetase was maintained despite occurrence of whole-genome duplications in Arabidopsis and rice as well as a polyploidization followed by a diploidization event (gene loss) in the latter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. C. V. Morgante and R. A. O. Rodrigues contributed equally to this work.  相似文献   

15.
WOX(WUSCHEL-related homebox)基因家族是植物特有的一类转录因子,是同源盒(homeobox,HB)转录因子超家族中的重要成员。WOX基因在植物干细胞调节及生殖发育过程中具有重要作用,其功能已在多个植物物种中鉴定。然而绿豆(Vigna radiate)VrWOX基因家族信息尚不清楚。本研究通过同源比对和聚类分析,在绿豆基因组中鉴定了42个VrWOX基因。VrWOX基因在绿豆染色体中分布不均,其中7号染色体含有的VrWOX数量最多。VrWOX基因分为古老进化支(19个VrWOX)、中等进化支(12个VrWOX)和年轻进化支(WUSCHEL进化支,11个VrWOX)3个亚类。种内和种间共线性分析发现,VrWOX基因共有12个重复事件,与拟南芥(Arabidopsis thaliana)AtWOX有15个同源基因对,与菜豆(Phaseolus vulgaris)PvWOX有22个同源基因对。VrWOX基因在基因结构、保守基序等方面存在很大差异,因而可能存在功能差异。VrWOX基因启动子区域含有不同种类和不同数量的顺式作用元件,导致VrWOX基因在不同组织中表现出不同的基因表达模式。本研究对VrWOX基因家族信息和表达模式进行了分析,为绿豆VrWOX基因功能和调控网络的解析奠定了一定的理论依据。  相似文献   

16.

Background  

High gene numbers in plant genomes reflect polyploidy and major gene duplication events. Oryza sativa, cultivated rice, is a diploid monocotyledonous species with a ~390 Mb genome that has undergone segmental duplication of a substantial portion of its genome. This, coupled with other genetic events such as tandem duplications, has resulted in a substantial number of its genes, and resulting proteins, occurring in paralogous families.  相似文献   

17.
Leucine‐rich repeat receptor‐like kinases (LRR RLKs) form a large family of plant signaling proteins consisting of an extracellular domain connected by a single‐pass transmembrane sequence to a cytoplasmic kinase domain. Autophosphorylation on specific Ser and/or Thr residues in the cytoplasmic domain is often critical for the activation of several LRR RLK family members with proven functional roles in plant growth regulation, morphogenesis, disease resistance, and stress responses. While identification and functional characterization of in vivo phosphorylation sites is ultimately required for a full understanding of LRR RLK biology and function, bacterial expression of recombinant LRR RLK cytoplasmic catalytic domains for identification of in vitro autophosphorylation sites provides a useful resource for further targeted identification and functional analysis of in vivo sites. In this study we employed high‐throughput cloning and a variety of mass spectrometry approaches to generate an autophosphorylation site database representative of more than 30% of the approximately 223 LRR RLKs in Arabidopsis thaliana. We used His‐tagged constructs of complete cytoplasmic domains to identify a total of 592 phosphorylation events across 73 LRR RLKs, with 497 sites uniquely assigned to specific Ser (268 sites) or Thr (229 sites) residues in 68 LRR RLKs. Multiple autophosphorylation sites per LRR RLK were the norm, with an average of seven sites per cytoplasmic domain, while some proteins showed more than 20 unique autophosphorylation sites. The database was used to analyze trends in the localization of phosphorylation sites across cytoplasmic kinase subdomains and to derive a statistically significant sequence motif for phospho‐Ser autophosphorylation.  相似文献   

18.
The leucine-rich repeat class of receptor-like kinase (LRR-RLKs) encoding genes represents the largest family of putative receptor genes in the Arabidopsis thaliana genome. However, very little is known about the range of biological process that they control. We present in this paper the functional characterization of RLK7 that has all the structural features of a receptor-like kinase of the plant-specific LRR type. To this end, we identified and characterized three independent T-DNA insertion mutants, constructed lines carrying truncated versions of this putative receptor, one lacking the cytoplasmic kinase domain (RLK7Δkin) and the other one lacking 14 LRR repeats (RLK7ΔLRR) and generated RLK7 overexpressing lines. We thus provide evidences that RLK7 is involved in the control of germination speed and the tolerance to oxidant stress. First, consistent with the expression kinetics of the RLK7 gene in the seeds, we found that all three mutants showed a delay in germination, whereas the overexpressors, RLK7Δkin and RLK7ΔLRR lines displayed a phenotype of more precocious germination. Second, a non-hypothesis driven proteomic approach revealed that in the seedlings of the three T-DNA insertion lines, four enzymes directly or indirectly involved in reactive oxygen species detoxification, were significantly less abundant. Consistent with this finding, the three mutants were less tolerant than the wild type to a hydrogen peroxide treatment, whereas the overexpressors, RLK7Δkin and RLK7ΔLRR lines presented the opposite phenotype.  相似文献   

19.

Background  

The mechanism by which duplicate genes originate – whether by duplication of a whole genome or of a genomic segment – influences their genetic fates. To study events that trigger duplicate gene persistence after whole genome duplication in vertebrates, we have analyzed molecular evolution and expression of hundreds of persistent duplicate gene pairs in allopolyploid clawed frogs (Xenopus and Silurana). We collected comparative data that allowed us to tease apart the molecular events that occurred soon after duplication from those that occurred later on. We also quantified expression profile divergence of hundreds of paralogs during development and in different tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号