首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inheritance traits of a Cry1Ab-resistant strain of the sugarcane borer, Diatraea saccharalis (F.) were analyzed using various genetic crosses. Reciprocal parental crosses between Cry1Ab-susceptible and Cry1Ab-resistant populations, F1 by F1 crosses, and backcrosses of F1 with the Cry1Ab-resistant population were successfully completed. Larval mortality of the parental and cross-populations were assayed on Cry1Ab diet and Bacillus thuringiensis (Bt)-corn leaf tissue. Maternal effects and sex linkage were examined by comparing the larval mortality between the two F1 populations. Dominance levels of resistance were measured by comparing the larval mortality of the Cry1Ab-resistant, -susceptible, and -heterozygous populations. Number of genes associated with the resistance was evaluated by fitting the observed mortality of F2 and backcross populations with a Mendelian monogenic inheritance model. Cry1Ab resistance in D. saccharalis was likely inherited as a single or a few tightly linked autosomal genes. The resistance was incompletely recessive on Bt corn leaf tissue, while the effective dominance levels (DML) of resistance increased as Cry1Ab concentrations decreased with Cry1Ab-treated diet. DML estimated based on larval mortality on intact Bt corn plants reported in a previous study ranged from 0.08 to 0.26. This variability in DML levels of Cry1Ab resistance in D. saccharalis suggests that Bt corn hybrids must express a sufficient dose of Bt proteins to make the resistance genes functionally recessive. Thus, Bt resistant heterozygous individuals can be killed as desired in the “high/dose refuge” resistance management strategy for Bt corn.  相似文献   

2.
Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC50 of 0.24 and 0.30 μg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations.  相似文献   

3.
Abstract Sugarcane borer, Diatraea saccharalis (F.), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US mid‐south region. Resistance development in target pest populations is a major threat to the sustainable use of Bt crops. In our field trials in 2009, a significant number of live borers and plant injury from D. saccharalis were observed in an experimental SmartStax? maize line. The objective of this study was to assess the relative susceptibility of two field populations of D. saccharalis collected from non‐Bt and Bt maize plants containing SmartStax? traits to five individual Cry proteins. The five Bt proteins included two proteins (Cry1A.105 and Cry2Ab2) that were expressed in SmartStax? maize plants and three other common Bt proteins (Cry1Aa, Cry1Ab and Cry1Ac) that were not produced in SmartStax?. Larval mortality and growth inhibition on Bt diet of the fourth generation after field collections were evaluated 7 days after release of neonates on the diet surface. The laboratory bioassays showed that 50% lethal concentration (LC50) values for Cry1A.105 and Cry2Ab2 for the population originated from Bt plants were 3.55‐ and 1.34‐fold greater, respectively, than those of the population collected from non‐Bt plants. In contrast, relative to the population from non‐Bt plants, the LC50 of the population sampled from Bt plants were 3.85‐, 2.5‐ and 1.64‐fold more sensitive to Cry1Aa, Cry1Ab and Cry1Ac, respectively. The results did not provide clear evidence to conclude that the observed field survival of D. saccharalis on Bt plants was associated with increased levels of resistance.  相似文献   

4.
Baseline susceptibility of legume pod borer (LPB) to the insecticidal crystal proteins (ICPs) from Bacillus thuringiensis, viz, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca and Cry2Aa was assessed in Taiwan. Insect bioassays were performed by incorporating the Bt delta-endotoxins into the LPB artificial diet. The efficacy of different Bt delta-endotoxins against second instar larvae of LPB showed that the toxin Cry1Ab was the most potent toxin (LC(50) 0.207ppm), followed by Cry1Ca, Cry1Aa, Cry2Aa and Cry1Ac in descending order, with LC(50)s 0.477ppm, 0.812ppm, 1.058ppm and 1.666ppm, respectively. Hence, Cry1Ab and/or Cry1Ca toxins would provide effective control of early larval stages of LPB.  相似文献   

5.
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.  相似文献   

6.
A field population (SZ) of Plutella xylostella, collected from the cabbage field in Shenzhen, Guangdong Province of China in 2002, showed 2.3-fold resistance to Cry1Aa, 110-fold to Cry1Ab, 30-fold to Cry1Ac, 2.1-fold to Cry1F, 5.3-fold to Cry2Aa and 6-fold resistance to Bacillus thuringiensis var. kurstaki (Btk) compared with a susceptible strain (ROTH). The SZBT strain was derived from the SZ population through 20 generations of selection with activated Cry1Ac in the laboratory. While the SZBT strain developed 1200-fold resistance to Cry1Ac after selection, resistance to Cry1Aa, Cry1Ab, Cry1F, and Btk increased to 31-, 1900-,>33- and 17-fold compared with the ROTH strain. However, little or no cross-resistance was detected to Cry1B, Cry1C and Cry2Aa in the SZBT strain. Genetic cross analyses between the SZBT and ROTH strains revealed that Cry1Ac-resistance in the SZBT strain was controlled by a single, autosomal, incompletely recessive gene. Binding studies with 125I-labeled Cry1Ac showed that the brush border membrane vesicles (BBMVs) of midguts from the resistant SZBT insects had lost binding to Cry1Ac. Allelic complementation tests demonstrated that the major Bt resistance locus in the SZBT strain was same as that in the Cry1Ac-R strain which has “mode 1” resistance to Bt. An F1 screen of 120 single-pair families between the SZBT strain and three field populations collected in 2008 was carried out. Based on this approach, the estimated frequencies of Cry1Ac-resistance alleles were 0.156 in the Yuxi population from Yunnan province, and 0.375 and 0.472 respectively in the Guangzhou and Huizhou populations from Guangdong province.  相似文献   

7.
The cross-resistance spectrum and biochemical mechanism of resistance to the Bacillus thuringiensis Cry1Ab toxin was studied in a field-derived strain of Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) that was further selected in the laboratory for high levels (>1000-fold) of resistance to Cry1Ab. The resistant strain exhibited high levels of cross-resistance to Cry1Ac and Cry1Aa but only low levels of cross-resistance (<4-fold) to Cry1F. In addition, there was no significant difference between the levels of resistance to full-length and trypsin-activated Cry1Ab protein. No differences in activity of luminal gut proteases or altered proteolytic processing of the toxin were observed in the resistant strain. Significantly reduced binding of radiolabeled Cry1Aa was observed in the resistant strain whereas binding of Cry1Ab and Cry1Ac was practically the same in both resistant and susceptible strains. The interpretation of the overall data seems to suggest the involvement of an alteration in the binding of Cry1A toxins to a common receptor, which is more clearly revealed by the binding assays using radiolabeled Cry1Aa.  相似文献   

8.
Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis   总被引:2,自引:0,他引:2  
Nine of the most common lepidopteran active Cry proteins from Bacillus thuringiensis have been tested for activity against Spodoptera exigua. Because of possible intraspecific variability, three laboratory strains (FRA, HOL, and MUR) have been used. Mortality assays were performed with the three strains. LC50 values for the active toxins were determined to the FRA and the HOL strains, whereas susceptibility of the MUR strain was assessed using only two concentrations. The results showed that Cry1Ca, Cry1Da, and Cry1Fa were the most effective toxins with all strains. Cry1Ab was found effective for the HOL strain, but very little effective against FRA (6.5-fold) and MUR strains. Cry1Aa and Cry1Ac were marginally toxic to all strains, whereas the rest of the toxins tested (Cry1Ba, Cry2Aa, and Cry2Ab) were non toxic. Significant differences in susceptibility among strains were also found for Cry1Da, being the FRA strain 25-fold more susceptible than the HOL strain. Growth inhibition, as an additional susceptibility parameter, was determined in the FRA strain with the 9 toxins. The toxicity profile obtained differed from that observed in mortality assays. Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, Cry1Da, and Cry1Fa toxins produced a similar larval growth inhibition. Cry2Aa had a lower but clear effect on larval growth inhibition, whereas Cry1Ba and Cry2Ab did not have any effect.  相似文献   

9.
Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops.  相似文献   

10.
High levels of resistance to Bt toxin Cry2Ab have been identified to be genetically linked with loss of function mutations of an ABC transporter gene (ABCA2) in two lepidopteran insects, Helicoverpa armigera and Helicoverpa punctigera. To further confirm the causal relationship between the ABCA2 gene (HaABCA2) and Cry2Ab resistance in H. armigera, two HaABCA2 knockout strains were created from the susceptible SCD strain with the CRISPR/Cas9 genome editing system. One strain (SCD-A2KO1) is homozygous for a 2-bp deletion in exon 2 of HaABCA2 created by non-homologous end joining (NHEJ). The other strain (SCD-A2KO2) is homozygous for a 5-bp deletion in exon 18 of HaABCA2 made by homology-directed repair (HDR), which was produced to mimic the r2 resistance allele of a field-derived Cry2Ab-resistant strain from Australia. Both knockout strains obtained high levels of resistance to both Cry2Aa (>120-fold) and Cry2Ab (>100-fold) compared with the original SCD strain, but no or very limited resistance to Cry1Ac (<4-fold). Resistance to Cry2Ab in both knockouts is recessive, and genetic complementary tests confirmed Cry2Ab resistance alleles are at the same locus (i.e. HaABCA2) for the two strains. Brush border membrane vesicles (BBMVs) of midguts from both knockout strains lost binding with Cry2Ab, but maintained the same binding with Cry1Ac as the SCD strain. In vivo functional evidence from this study demonstrates knockout of HaABCA2 confers high levels of resistance to both Cry2Aa and Cry2Ab, confirming that HaABCA2 plays a key role in mediating toxicity of both Cry2Aa and Cry2Ab against H. armigera.  相似文献   

11.
First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case.  相似文献   

12.
周浩  李博  牛林  邱林  王永 《生物安全学报》2018,27(4):249-254
【目的】二化螟是水稻的重要害虫之一,钙黏蛋白(cadherin,CAD)是一类重要的Bt杀虫蛋白受体,在获得二化螟钙黏蛋白基因(Cs CAD1)的基础上,明确Cs CAD1蛋白与Cry1Ac和Cry2Aa蛋白的结合能力。【方法】利用PCR技术克隆Cs CAD1基因片段,将构建的p ET-28a-(+)-Cs CAD1重组质粒转入原核表达菌株BL21(DE3)中,IPTG诱导表达。目的蛋白经Ni柱亲和纯化后SDS-PAGE电泳检测,利用western blot和ligand blot技术分析其与Cry1Ac和Cry2Aa蛋白的结合能力。【结果】重组载体可在表达菌株BL21中表达一个约44 ku的蛋白,原核表达载体构建成功。SDS-PAGE显示该蛋白条带单一,且纯度较好。Ni柱亲和层析纯化该目的蛋白后进行Ligand blot分析,结果显示Cs CAD1重组蛋白可以与Cry1Ac和Cry2Aa蛋白结合。【结论】Cs CAD1蛋白可以与Cry1Ac和Cry2Aa蛋白结合,是潜在的Cry蛋白受体,所得结果有助于阐明Cry1Ac和Cry2Aa蛋白对二化螟的作用机制。  相似文献   

13.
Infection with Nosema pyrausta Paillot lengthens developmental period of Bt-susceptible Ostrinia nubilalis (Hübner) to a similar extent as feeding on Cry1Ab-incorporated diet in Cry1Ab-resistant O. nubilalis, and these two factors combined lengthen developmental period further than either alone. Resistant O. nubilalis mating with infected susceptible, or infected resistant partners would produce partially- and fully-resistant offspring, respectively, infected with N. pyrausta. To investigate the impacts on the progeny of such matings, test crosses were set up to produce partially- and fully Cry1Ab-resistant O. nubilalis offspring transovarially infected and not infected with N. pyrausta, which were exposed to Cry1Ab toxin at doses of 0, 3, or 30 ng/cm2 for 7 days. Transovarial infection with N. pyrausta significantly decreased 7 day survival of partially and fully-resistant O. nubilalis feeding on 30 ng/cm2 Cry1Ab. In addition, N. pyrausta infection delayed larval development (as measured by weight) of partially- and fully-resistant O. nubilalis feeding on 3 and 30 ng/cm2 Cry1Ab. Impacts of natural enemies on target pests may have the potential to impact evolution of resistance. N pyrausta-infected O. nubilalis are more strongly affected by feeding on Bt, and would be less likely to survive to adulthood to pass on resistance to the next generation. This indigenous microsporidium may work to delay evolution of resistance in O. nubilalis by lowering their ability to survive on Bt.  相似文献   

14.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

15.
Transgenic corn (MON 810), expressing the Bacillus thuringiensis (Bt) protein, Cry1Ab, was evaluated under greenhouse conditions for its tolerance to the maize stem borer, Chilo partellus. Bt corn (MON 810) provided effective protection against the stem borer even under a high level of larval infestation in the greenhouse. The observed tolerance is examined and discussed in the light of the susceptibility of C. partellus to the Cry1Ab protein in laboratory bioassays. The implications of the tissue concentrations of Cry1Ab in MON 810, and baseline susceptibility recorded in the current study, for insect-resistance management are discussed.  相似文献   

16.
Biosafety of a genetically modified crop is required to be assessed prior to its commercialization. For this, a suitable artificial diet was developed and used to establish a dietary exposure test for assessing the toxicity of midgut-active Bt insecticidal proteins on Chrysopa pallens (Rambur). Subsequently, this dietary exposure test was used to evaluate the toxicity of the proteins Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, and Vip3Aa on C. pallens larvae. Temporal stability, bioactivity, and the intake of the insecticidal proteins were confirmed by enzyme-linked immunosorbent assay and a sensitive-insect bioassay. The life history characteristics, such as survival, pupation, adult emergence, 7-day larval weight, larval developmental time, and emerged male and female fresh weights remained unaffected, when C. pallens were fed the pure artificial diet (negative control) and the artificial diets containing 200 μg/g of each purified protein: Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, or Vip3Aa. On the contrary, all of the life history characteristics of C. pallens larvae were adversely affected when fed artificial diet containing boric acid (positive control). The results demonstrate that diets containing the tested concentrations of Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, and Vip3Aa have null effects on C. pallens larvae. The outcome indicates that genetically modified crops expressing the tested Bt proteins are safe for the lacewing, C. pallens.  相似文献   

17.

Background

Bacillus thuringiensis (Bt) Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry) proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interactions are one line of evidence that Bt protein mechanisms of action differ and that the probability of receptor-mediated cross-resistance is low.

Methodology/Principal Findings

Binding site interactions were investigated between Cry34Ab1/Cry35Ab1 and coleopteran active insecticidal proteins Cry3Aa, Cry6Aa, and Cry8Ba on western corn rootworm midgut brush border membrane vesicles (BBMV). Competitive binding of radio-labeled proteins to western corn rootworm BBMV was used as a measure of shared binding sites. Our work shows that 125I-Cry35Ab1 binds to rootworm BBMV, Cry34Ab1 enhances 125I-Cry35Ab1 specific binding, and that 125I-Cry35Ab1 with or without unlabeled Cry34Ab1 does not share binding sites with Cry3Aa, Cry6Aa, or Cry8Ba. Two primary lines of evidence presented here support the lack of shared binding sites between Cry34Ab1/Cry35Ab1 and the aforementioned proteins: 1) No competitive binding to rootworm BBMV was observed for competitor proteins when used in excess with 125I-Cry35Ab1 alone or combined with unlabeled Cry34Ab1, and 2) No competitive binding to rootworm BBMV was observed for unlabeled Cry34Ab1 and Cry35Ab1, or a combination of the two, when used in excess with 125I-Cry3Aa, or 125I-Cry8Ba.

Conclusions/Significance

Combining two or more insecticidal proteins active against the same target pest is one tactic to delay the onset of resistance to either protein. We conclude that Cry34Ab1/Cry35Ab1 are compatible with Cry3Aa, Cry6Aa, or Cry8Ba for deployment as insect resistance management pyramids for in-plant control of western corn rootworm.  相似文献   

18.
Although transgenic crops expressing either Cry1Ab or Cry1Ac, both derived from Bacillus thuringiensis (Bt), have been used commercially, the evolution of insects resistance to these CRY proteins has become a challenge. Thus, it has been proposed that co-expression of two Bt proteins with different modes of action may delay the development of resistance to Bt. However, few Bt proteins have been identified as having different modes of action from those of Cry1Ab or Cry1Ac. In this study, transgenic lines of maize over-expressing either Cry1Ie or Cry1Ac gene have been developed. Several independent transgenic lines with one copy of the foreign gene were identified by Southern blot analysis. Bioassays in the laboratory showed that the transgenic plants over-expressing Cry1Ie were highly toxic against the wild-type cotton bollworm (Heliothis armigera), producing mortality levels of 50 % after 6 days of exposure. However, the mortality caused by these plants was lower than that caused by the Cry1Ac transgenic plants (80 %) and MON810 plants expressing Cry1Ab (100 %), which both exhibited low toxicity toward the Cry1Ac-resistant cotton bollworm. In contrast, three transgenic maize lines expressing Cry1Ie induced higher mortality against this pest and were also highly toxic to the Asian corn borer (Ostrinia furnacalis) in the field. These results indicate that the Cry1Ie protein has a different mode of action than the Cry1Ab and Cry1Ac proteins. Therefore, the use of transgenic plants expressing Cry1Ie might delay the development of Bt-resistant insects in the field.  相似文献   

19.
Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

20.
The cultivation of Lepidoptera‐resistant Bt‐maize may affect nontarget butterflies. We assessed the risk posed by event MON89034 × MON88017 (expressing Cry1A.105 and Cry2Ab2 against corn borers) to nontarget Lepidoptera. Using the small tortoiseshell Aglais urticae, a butterfly species common in central Europe, as a test organism we (i) assessed the toxicity of Bt‐maize pollen on butterfly larvae; (ii) measured pollen deposition on leaves of the host plant Urtica dioica; (iii) mapped the occurrence and distribution of host plants and larvae in two arable landscapes in Germany during maize anthesis; and (iv) described the temporal occurrence of a 1‐year population of A. urticae. (i) Larvae‐fed 200 Bt‐maize pollen grains/cm2 had a reduced feeding activity. Significant differences in developmental time existed at pollen densities of 300 Bt‐maize pollen grains/cm2 and in survival at 400 grains/cm2. (ii) The highest pollen amount found was 212 grains/cm2 at the field margin. Mean densities were much lower. (iii) In one region, over 50% of A. urticae nests were located within 5 m of a maize field, while in the other, all nests were found in more than 25 m distance to a maize field. (iv) The percentage of larvae developing during maize anthesis was 19% in the study area. The amount of pollen from maize MON89034 × MON88017 found on host plants is unlikely to adversely affect a significant proportion of larvae of A. urticae. This paper concludes that the risk of event MON89034 × MON88017 to populations of this species is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号