首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The occurrence of teichoic acids in cultures of Actinomadura genus was studied. All 30 strains examined in this survey contained alditol phosphate polymers. Most of the cultures had poly(glycerol phosphate) teichoic acids. Some of the poly(glycerol phosphate) chains bear madurose as a glycosyl substituent. In seven cultures glycerol teichoic acids with an unusual localization of the phosphodiester linkage were detected. Ribitol teichoic acids were found in six organisms.  相似文献   

2.
Disaccharide 1-phosphate polymers as well as teichoic acids of various structures have been found in the cell walls of the representatives of the Bacillus subtilis group, namely Bacillus subtilis subsp. spizizenii VKM B-720 and VKM B-916, B. subtilis VKM B-517, and Bacillus vallismortis VKM B-2653T. Disaccharide 1-phosphate polymers are composed of repeating units of the following structure: -P-4)-β-D-GlcpNAc-(1→6)-α-D-Galp-(1-, the N-acetylglucosamine residues are partially acetylated at positions O3 and O6 (VKM B-720 and VKM B-916); -P-4)-β-D-Glcp-(1→6)-α-D-GlcpNAc-(1-, the glucopyranose residues are partially acetylated at positions O2 or O3 (VKM B-517); -P-6)-α-D-GlcpNH 3 + /α-D-GlcpNAc-(1→2)-α-D-Glcp-(1-, the N-acetylglucosamine residues are partially deacetylated (VKM B-2653T). The structures of the two last disaccharide 1-phosphate polymers have not been reported so far for Gram-positive bacteria. The teichoic acids in the studied strains are O-D-alanyl-1,5-poly(ribitol phosphates) substituted with β-D-glucopyranose (VKM B-517, VKM B-720, VKM B-916) or 2-acetamido-2-deoxy-β-D-glucopyranose (VKM B-2653T). The structures of the phosphate-containing polymers have been studied by chemical methods and by NMR spectroscopy.  相似文献   

3.
The cell wall of Bacillus subtilis VKM B-762 contains, along with 1,5-poly[4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)ribitol phosphate], a novel type of glycopolymer involving three types of inter-monomeric bonds in the repeating unit, viz., amide, glycosidic and phosphodiester:Such a structural pattern of natural glycopolymers has been hitherto unknown. This polymer represents a novel type of teichoic acids.  相似文献   

4.
Cell walls of three type strains of the Bacillus subtilis group, Bacillus mojavensis VKM B-2650, Bacillus amyloliquefaciens subsp. amyloliquefaciens VKM B-2582, and Bacillus sonorensis VKM B-2652, are characterized by the individual set of teichoic acids. All strains contained 1,3-poly(glycerol phosphates), unsubstituted, acylated with D-alanine, and glycosylated. The latter differ in the nature of the monosaccharide residue. Teichoic acids of B. mojavensis VKM B-2650T and B. amyloliquefaciens subsp. amyloliquefaciens VKM B-2582T contained α-glucopyranose, while those of B. sonorensis VKM B-2652T contained β-glucopyranose and N-acetyl-α-D-glucosamine. Moreover, cell walls of B. mojavensis VKM B-2650T contained a teichoic acid of poly(glycosylglycerol phosphate) nature with the following structure of the repeating unit: -4)-α-D-α-D-GlcpNAc-(1 → 3)]-Glcp-(1 → 2)-sn-Gro-(3-P-. The type strains have been characterized according to the composition of cell wall sugars and polyols. Application of teichoic acids (set and structure) as chemotaxonomic characteristics is discussed for six type strains of the Bacillus subtilis group. Polymer structures were determined by chemical and NMR spectroscopic techniques.  相似文献   

5.
A comparative study of the structures of carbohydrate-containing cell wall polymers isolated from the strains of the Bacillus subtilis group was performed by means of chemical and NMR spectroscopic meth ods. Polymers of different structure were revealed, namely, 1,3-poly(glycerol phosphates) with β-glucopyranose in Bacillus subtilis strains VKM B-520, VKM B-723, and VKM B-763 (= VKM B-911); 1,5-poly(ribitol phosphate) with α-glucopyranose in B. subtilis strains VKM B-722 and VKM B-922 (the structure is reported for the first time); and simultaneously two polymers in B. subtilis VKM B-761, 1,5-poly(ribitol phosphate) with β-glucopyranose and the disaccharide 1-phosphate polymer with the following repeating unit: -6)-α-D-Galp-(1-P-4)-gB-D-GlcpNAc-(1-, in which the hydroxyls at C3 and C6 of glucosamine residues are partially O-acetylated (the structure is reported for the first time). Heterogeneity of the B. subtilis group is con firmed by variations in the structure and composition of the cell wall polymers. The cell surface polymers are useful for discrimination of closely related bacilli strains and are cell wall marker components that may be an indispensable element of the Bacillus subtilis group taxonomy along with the genomosystematic methods.  相似文献   

6.
An anomeric phosphodiester linkage formed by a glycosyl phosphate unit and a hydroxyl group of another monosaccharide is found in many glycopolymers of the outer membrane in bacteria (e.g., capsular polysaccharides and lipopolysaccharides), yeasts and protozoa. The polymers (phosphoglycans) composed of glycosyl phosphate (or oligoglycosyl phosphate) repeating units could be chemically classified as poly(glycosyl phosphates). Their importance as immunologically active components of the cell wall and/or capsule of numerous microorganisms upholds the need to develop routes for the chemical preparation of these biopolymers. In this paper, we (1) present a review of the primary structures (known to date) of natural phosphoglycans from various sources, which contain glycosyl phosphate units, and (2) discuss different approaches and recent achievements in the synthesis of glycosyl phosphosaccharides and poly(glycosyl phosphates).  相似文献   

7.
The PhoPR‐mediated response to phosphate limitation (PHO response) in Bacillus subtilis subsp subtilis is amplified and maintained by reducing the level of Lipid VG composed of poly(glycerol phosphate), a wall teichoic acid (WTA) biosynthetic intermediate that inhibits PhoR autokinase activity. However, the reduction in Lipid VG level is effected by activated PhoP~P, raising the question of how the PHO response is first initiated. Furthermore, that WTA is composed of poly(ribitol phosphate) in Bacillus subtilis subsp spizizenii prompted an investigation of how the PHO response is regulated in that bacterium. We report that the PHO responses of B. subtilis subsp subtilis and subsp spizizenii are distinct. The PhoR kinases of the two B. subtilis subspecies are functionally equivalent and are activated either by the TagA/TarA or TagB/TarB enzyme product. However, they are inhibited by Lipid VG composed of poly(glycerol phosphate) but not by Lipid VR composed of poly(ribitol phosphate). Therefore, the distinctive PHO responses of these B. subtilis subspecies stem from the differential sensitivity of PhoR kinases to the polyol composition of Lipid V and from the genomic organization of WTA biosynthetic genes and the regulation of their expression.  相似文献   

8.
A hexasaccharide 1-phosphate polymer of original structure and two teichoic acids (TA) belonging to different structural types were found in Arthrobacter uratoxydans VKM Ac-1979T cell wall. The poly(hexasaccharide 1-phosphate) combines features of teichuronic acids and glycosyl 1-phosphate polymers, and its structure has never been reported earlier. Its composition includes residues of α- and β-D-glucuronic acid as well as α-D-galacto-, β-D-gluco-, α-D-mannopyranose, and 6-O-acetylated 2-acetamido-2-deoxy-α-D-glucopyranose. The phosphodiester bond in the polymer joins the glycoside hydroxyl of α-D-glucuronic acid and O6 of α-D-galactopyranose. TA 1 is β-D-glucosylated 1,3-poly(glycerol phosphate), and TA 2 is 3,6-linked poly[α-D-glucosyl-(1→2)-glycerol phosphate]. The phosphate-containing polymers were studied by chemical methods and on the basis of one-dimensional 1H-, 13C-, and 31P-NMR spectra, homonuclear two-dimensional 1H/1H COSY, TOCSY, ROESY, and heteronuclear 1H/13C HSQC, HSQC-TOCSY, HMBC, and 1H/31P HMBC experiments. The set and structure of the polymers revealed as well as the cell wall sugars (galactose, glucose, mannose, glucosamine) and glycerol can be used in microbiological practice for taxonomic purposes.  相似文献   

9.
A column of insoluble concanavalin A was prepared by coupling the protein to cyanogen bromide-activated Sepharose. When autolysates of Bacillus subtilis 168 cell walls were passed over the column, the alpha glucosylated teichoic acid component of the cell wall was retained. The teichoic acid could be eluted with dilute alpha-methylglucopyranose. The teichoic acid prepared by affinity chromatography from cell wall autolysates had a higher sedimentation rate than teichoic acids obtained by conventional methods.

Several authors have shown that concanavalin A (con A) forms complexes with alpha-glucosylated teichoic acids1–3. Doyle and Birdsell1 found that the teichoic acid of Bacillus subtilis 168 (trp C2) would precipitate with con A at neutral pH in dilute buffer. The formation of a precipitate was inhibited by sugars which bind to the active site of con A. This observation suggested that it should be possible to purify the teichoic acid by affinity chromatography using insoluble con A as the affinity probe. Lloyd4 and Donnelly and Goldstein5 have successfully employed insoluble con A to purify polysaccharides and glycoproteins. In this communication, we describe conditions for the rapid purification of the alpha-glucosylated teichoic acid of B. subtilis 168. The teichoic acid prepared by this procedure appears to be less degraded than teichoic acids obtained by conventional methods.  相似文献   

10.
Structurally identical teichoic acids were detected in cell walls of two soil isolates assigned to Brevibacterium linens based on phylogenetic data. Both cell walls contain unsubstituted 1,3-poly(glycerol phosphate) and poly(glycosylglycerol phosphate). Repeating units of the latter--alpha-D-GlcpNAc-(1-->4)-beta-D-Galp-(1-->1)-Gro--are bound by phosphodiester bonds including OH-3 of galactose and OH-3 of glycerol. Some of the N-acetylglucosamine residues have 4,6-pyruvic acid acetal, amounts of the latter in the two strains being unequal. Species-specificity of the structures of teichoic acids in the genus Brevibacterium is discussed.  相似文献   

11.
The distribution and substrate specificities of enzymes involved in the formation of linkage units which contain N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) or glucose and join teichoic acid chains to peptidoglycan were studied among membrane systems obtained from the following two groups of gram-positive bacteria: group A, including Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Staphylococcus aureus, and Lactobacillus plantarum; group B, Bacillus coagulans. All the membrane preparations tested catalyzed the synthesis of N-acetylglucosaminyl pyrophosphorylpolyprenol (GlcNAc-PP-polyprenol). The enzymes transferring glycosyl residues to GlcNAc-PP-polyprenol were specific to either UDP-ManNAc (group A strains) or UDP-glucose (group B strains). In the synthesis of the disaccharide-bound lipids, GlcNAc-PP-dolichol could substitute for GlcNAc-PP-undecaprenol. ManNAc-GlcNAc-PP-undecaprenol, ManNAc-GlcNAc-PP-dolichol, Glc-GlcNAc-PP-undecaprenol, Glc-GlcNAc-PP-dolichol, and GlcNAc-GlcNAc-PP-undecaprenol were more or less efficiently converted to glycerol phosphate-containing lipid intermediates and polymers in the membrane systems of B. subtilis W23 and B. coagulans AHU 1366. However, GlcNAc-GlcNAc-PP-dolichol could not serve as an intermediate in either of these membrane systems. Further studies on the exchangeability of ManNAc-GlcNAc-PP-undecaprenol and Glc-GlcNAc-PP-undecaprenol revealed that in the membrane systems of S. aureus strains and other B. coagulans strains both disaccharide-inked lipids served almost equally as intermediates in the synthesis of polymers. In the membrane systems of other B. subtilis strains as well as B. licheniformis and B. pumilus strains, however, the replacement of ManNAc-GlcNAc-PP-undecaprenol by Glc-GlcNAc-PP-undecaprenol led to a great accumulation of (glycerol phosphate)-Glc-GlcNAc-PP-undecaprenol accompanied by a decrease in the formation of polymers.  相似文献   

12.
Summary A localized region of low DNA sequence homology was revealed in two strains of Bacillus subtilis by a specific 100-fold reduction in transformation by W23 DNA of the tag1 locus, a teichoic acid marker of strain 168. Fifty nine rare recombinants, hybrid at this locus, had all acquired donor-specific phage resistance characters, while losing those specific to the 168 recipient. Chemical analysis of isolated cell walls showed that these modifications are associated with major changes in the wall teichoic acids. Genetic analysis demonstrated that determinants for the ribitol phosphate polymer of strain W23 had been transferred to 168, replacing those for the glycerol phosphate polymer in the recipient. All W23 genes coding for poly(ribitol phosphate) in the hybrids and those specifying anionic wall polymers in strain 168 are clustered near hisA. In addition to tag1, the region exchanged extends just beyond gtaA in some hybrids, whereas in others it may include the more distant gtaB marker, encompassing a region sufficient to contain at least 20 average-sized genes. Surface growth, flagellation, transformability and sporulation all appeared normal in hybrids examined. Recombinants without a major wall teichoic acid from either strain were not found, suggesting that an integral transfer of genes for poly(ribitol phosphate) from W23 had occurred in all hybrids isolated. We interpret these results as indicating an essential role for anionic wall polymers in the growth of B. subtillis.  相似文献   

13.
We report the nucleotide sequence and the characterization of the Bacillus subtilis tagGH operon. The latter is controlled by a σA-dependent promoter and situated in the 308° chromosomal region which contains genes involved in teichoic acid biosynthesis. TagG is a hydrophobic 32.2 kDa protein which resembles integral membrane proteins belonging to polymerexport systems of Gram-negative bacteria. Gene tagH encodes a 59.9 kDa protein whose N-moiety contains the ATP-binding motif and shares extensive homology with a number of ATP-binding proteins, particularly with those associated with the transport of capsular polysaccharides and O-antigens. That the tagGH operon is essential for cell growth was established by the failure to inactivate tagG and the 5′ -moiety of tagH by insertional mutagenesis. During limited tagGH expression, cells exhibited a cocoid morphology while their walls contained reduced amounts of phosphate as well as galactosamine. These observations, revealing impaired metabolism of both wall teichoic acids of B. subtilis 168, i.e. poly(glycerol phosphate), and poly(glucose galactosamine phosphate), combined with sequence homologies, suggest that TagG and TagH are involved in the translocation through the cytoplasmic membrane of the latter teichoic acids or their precursors.  相似文献   

14.
The presence of teichoic acids in a number of streptomycetes led to the conclusion that these biopolymers were widely spread in genus Streptomyces. The nature of the teichoic acid present in the mycelium was determined by extracting it with 10% trichloroacetic acid, precipitating it with ethanol and identifying the precipitated polymer by partial acid and alkali hydrolysis to alditol, alditol phosphates and glycosylalditol phosphates. Most strains examined in this survey contained glycerol or ribitol teichoic acids; in some cases neither type was detected.Structurally teichoic acids closely resemble those of other genera of gram-positive bacteria and in many cases represent poly(glycerol phosphate) and poly(ribitol phosphate) chains. The proportion of alditol residues bearing sugar substituents varied widely.Three species of genus Streptoverticillium contained glycerol teichoic acids. It is belived that some of the data presented in this paper might be used with some success in taxonomic studies of streptomycetes.  相似文献   

15.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

16.
Cell walls of Bacillus subtilis VKM B-760 and VKM B-764 are characterized by heterogeneous composition of teichoic acids. Polymer I with structure -6)-β-D-Galp-(1→1)-sn-Gro-(3-P-, polymer II with structure -6)-α-D-Glcp-(1→1)-sn-Gro-(3-P-, and a small amount of unsubstituted 1,3-poly(glycerol phosphate) were detected in strain VKM B-760. Strain VKM B-764 contains an analogous set of teichoic acids, but a characteristic feature of polymer II is the presence of disubstituted glycerol residue with α-glucopyranose localization in the integral chain at C-1 hydroxyl and β-glucopyranose as a side branch at C-2 hydroxyl (polymer III): -6)-α-D-Glcp-(1→1)-[β-D-Glcp-(1→2)]-sn-Gro-(3-P-. The structures of polymer I in bacilli and polymer III in Gram-positive bacteria are described for the first time. Teichoic acids were studied by chemical methods and on the basis of combined analysis of one-dimensional 1H-, 13C-, and 31P-NMR spectra, homonuclear two-dimensional 1H/1H COSY, TOCSY, and ROESY, and heteronuclear two-dimensional 1H/13C gHSQC- and HMQC-TOCSY experiments. Simultaneous presence of several different structure teichoic acids in the bacillus cell walls as well as chemotaxonomical perspectives of the application of these polymers as species-specific markers for members of the Bacillus genus is discussed.  相似文献   

17.
Cell wall and membrane teichoic acids from several bacteria formed soluble complexes with polysaccharides and bovine plasma in alkyl alcohol solutions. Polysaccharides which contain different monomeric units and anomeric configurations complexed with the teichoic acids, suggesting that the interaction is relatively nonspecific. Teichoic acids complexed glycogen or bovine plasma albumin in 50 to 97% ethanol solutions. The macromolecular association between teichoic acids and polysaccharides or proteins was independent of teichoic acid size over a threefold molecular weight range. Glycerol phosphates or an acid hydrolysate of teichoic acid would not complex to either glycogen or bovine plasma albumin in ethanol. The optimal interaction between glycogen and the Bacillus subtilis lipoteichoic acid occurred between pH 4.5 and 8.2. The ability of teichoic acids to bind polysaccharides and proteins in moderate dielectric constant solvents suggests that these polymers may serve as complexing agents for hydrophilic molecules found in membranes.  相似文献   

18.
The eftA gene in Bacillus subtilis has been suggested to be involved in the oxidation/reduction reactions during fatty acid metabolism. Interestingly etfA deletion in B. subtilis results in impairment in CaCO3 precipitation on the biofilm. Comparisons between the wild type B. subtilis 168 and its etfA mutant during in vitro CaCO3 crystal precipitation (calcite) revealed changes in phospholipids membrane composition with accumulation of up to 10% of anteiso-C17:0 and 11% iso-C17:0 long fatty acids. Ca2+ nucleation sites such as dipicolinic acid and teichoic acids seem to contribute to the CaCO3 precipitation. etfA mutant strain showed up to 40% less dipicolinic acid accumulation compared with B. subtilis 168, while a B. subtilis mutant impaired in teichoic acids synthesis was unable to precipitate CaCO3. In addition, B. subtilis etfA mutant exhibited acidity production leading to atypical flagella formation and inducing extensive lateral growth on the biofilm when grown on 1.4% agar. From the ecological point of view, this study shows a number of physiological aspects that are involved in CaCO3 organomineralization on biofilms.  相似文献   

19.
The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities.  相似文献   

20.
Investigations of cell wall teichoic acid structures of various staphylococci were carried out by a rapid method based on the gas-liquid chromatographic separation of products obtained after treatment of phenol-extracted cells with 70% hydrofluoric acid. In most of the strains teichoic acids of the poly(glycerolphosphate) and/or poly(ribitolphosphate) type were found. Teichoic acids of the poly(glycerolphosphate-N-acetylglucosaminephosphate) type and polymers consisting of N-acetylglucosaminephosphate were present in few strains.The results obtained by the rapid chemical screening method were compared with data obtained by serological analysis of teichoic acid structures using specific antisera and the lectin wheat germ agglutinin. Teichoic acid components occurring in low concentrations could only be detected with the chemical and not with the serological method. A number of strains of species of the genus Staphylococcus have been studied using these rapid methods. With a few exceptions, the teichoic acid structure proved to be a constant marker within a given species.Abbreviations used CIE counnter immunoelectrophoresis - GalNAc N-acetylgalactosamine - Glc glucose - GlcNAc N-acetylglucosamine - Gro glycerol - Rit ribitol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号