首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL.  相似文献   

2.
In insects, two ecologically relevant traits of thermal adaptation are knockdown resistance to high temperature (KRHT) and chill-coma recovery (CCR). Chromosome 2 of Drosophila melanogaster was tested for quantitative trait loci (QTL) affecting both CCR and KRHT in backcrosses between homosequential lines that are fixed for the standard (noninverted) sequence of this autosome. These lines were obtained by artificial selection on KRHT and subsequent inbreeding from a stock that was derived from a single wild population. Heat-induced expression of the 70KD heat-shock protein (Hsp70) was also examined for variation between the lines. Composite interval mapping was performed for each trait on each reciprocal backcross, identifying one QTL region in the middle of chromosome 2 for both KRHT and CCR. The largest estimates of additive effects were found in pericentromeric regions of chromosome 2, accounting for 10–14% (CCR) and 10–17% (KRHT) of the phenotypic variance in BC populations. No QTL was found in the region of the heat-shock factor ( hsf ) gene. However, the two parental lines have diverged in the heat-induced Hsp70 expression. Distribution of KRHT QTL on chromosome 2 was similar between this study based on crosses between lines selected from a single wild population and previous work based on crosses between selection lines from different continents. Colocalized QTL showed a trade–off association between CCR and KRHT, which should be the result of either multiple, tightly linked trait-specific genes or a single gene with pleiotropic effects on the traits. We discuss candidate loci contained within the QTL regions.  相似文献   

3.
Quantitative trait loci influencing fruit traits were identified by restriction fragment length polymorphism (RFLP) analysis in a population of recombinant inbred lines (RIL) derived from a cross of the cultivated tomato, Lycopersicon esculentum with a related wild species Lycopersicon cheesmanii. One hundred thirty-two polymorphic RFLP loci spaced throughout the tomato genome were scored for 97 F8 RIL families. Fruit weight and soluble solids were measured in replicated trials during 1991 and 1992. Seed weight was measured in 1992. Significant (P<0.01 level) quantitative trait locus (QTL) associations of marker loci were identified for each trait. A total of 73 significant marker locus-trait associations were detected for the three traits measured. Fifty-three of these associations were for fruit weight and soluble solids, many of which involved marker loci signficantly associated with both traits. QTL with large effects on all three traits were detected on chromosome 6. Greater homozygosity at many loci in the RIL population as compared to F2 populations and greater genomic coverage resulted in increased precision in the estimation of QTL effects, and large proportions of the total phenotypic variance were explained by marker class variation at significant marker loci for many traits. The RIL population was effective in detecting and discriminating among QTL for these traits previously identified in other investigations despite skewed segregation ratios at many marker loci. Large additive effects were measured at significant marker loci. Lower fruit weight, higher soluble solids, and lower seed weight were generally associated with RFLP alleles from theL. cheesmanii parent.  相似文献   

4.
5.
Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dramatically divergent lines from geographically different thermal environments were artificially selected on KRHT. These lines were crossed to produce two backcross (BC) populations. Each BC was analysed for 200 males with 18 marker loci on chromosomes 2 and 3. Three X-linked markers were used to test for X-linked QTL in an exploratory way. The largest estimate of autosome additive effects was found in the pericentromeric region of chromosome 2, accounting for 19.26% (BC to the low line) and 29.15% (BC to the high line) of the phenotypic variance in BC populations, but it could represent multiple closely linked QTL. Complete dominance was apparent for three QTL on chromosome 3, where heat-shock genes are concentrated. Exploratory analysis of chromosome X indicated a substantial contribution of this chromosome to KRHT. The results show that a large-effect QTL with dominant gene action maps on the right arm of chromosome 3. Further, the results confirm that QTL for heat resistance are not limited to chromosome 3.  相似文献   

6.
Tocopherols are essential micronutrients for humans and animals, with several beneficial effects in plants. Among cereals, only maize grains contain high concentrations of tocopherols. In this investigation we analyzed, during 2004 and 2005, by high-performance liquid chromatography (HPLC), a population of 233 recombinant inbred lines (RIL) which were derived from two diverse parents and had extremely variable tocopherol content and composition. A genetic map was constructed using 208 polymorphic molecular markers including gene-targeted markers based on six candidate genes of the tocopherol biosynthesis pathway (HPPD, VTE1, VTE3, VTE4, P3VTE5, and P4VTE5). Thirty-one quantitative trait loci (QTL) associated with quantitative variation of tocopherol content and composition were identified by composite interval mapping (CIM); these were located on sixteen genomic regions covering all the chromosomes except chromosome 4. Most (65%) QTL were co-located, suggesting that in some cases the same QTL predominantly affected the amounts of more than one tocopherol. Two candidate genes, HPPD and VTE4 showed co-localization with major QTL for tocopherol content and composition whereas only one interval (umc1075–umc1304) on chromosome eight exhibited a QTL for α, δ, γ, and total tocopherols with high LOD and PVE values. The candidate genes associated with tocopherol content and with composition, especially VTE4 and HPPD, could be precisely used for alteration of the tocopherol content and composition of maize grains by development of functional markers. Other identified major QTL especially those on chromosomes 8, 1, and 2 (near candidate gene VTE5) can also be used for improvement of maize grain quality by marker-assisted selection.  相似文献   

7.

Background

Sorghum [Sorghum bicolor (L.) Moench] is an important dry-land cereal of the world providing food, fodder, feed and fuel. Stay-green (delayed-leaf senescence) is a key attribute in sorghum determining its adaptation to terminal drought stress. The objective of this study was to validate sorghum stay-green quantitative trait loci (QTL) identified in the past, and to identify new QTL in the genetic background of a post-rainy adapted genotype M35-1.

Results

A genetic linkage map based on 245 F9 Recombinant Inbred Lines (RILs) derived from a cross between M35-1 (more senescent) and B35 (less senescent) with 237 markers consisting of 174 genomic, 60 genic and 3 morphological markers was used. The phenotypic data collected for three consecutive post-rainy crop seasons on the RIL population (M35-1 × B35) was used for QTL analysis. Sixty-one QTL were identified for various measures of stay-green trait and each trait was controlled by one to ten QTL. The phenotypic variation explained by each QTL ranged from 3.8 to 18.7%. Co-localization of QTL for more than five traits was observed on two linkage groups i.e. on SBI-09-3 flanked by S18 and Xgap206 markers and, on SBI-03 flanked by XnhsbSFCILP67 and Xtxp31. QTL identified in this study were stable across environments and corresponded to sorghum stay-green and grain yield QTL reported previously. Of the 60 genic SSRs mapped, 14 were closely linked with QTL for ten traits. A genic marker, XnhsbSFCILP67 (Sb03g028240) encoding Indole-3-acetic acid-amido synthetase GH3.5, was co-located with QTL for GLB, GLM, PGLM and GLAM on SBI-03. Genes underlying key enzymes of chlorophyll metabolism were also found in the stay-green QTL regions.

Conclusions

We validated important stay-green QTL reported in the past in sorghum and detected new QTL influencing the stay-green related traits consistently. Stg2, Stg3 and StgB were prominent in their expression. Collectively, the QTL/markers identified are likely candidates for subsequent verification for their involvement in stay-green phenotype using NILs and to develop drought tolerant sorghum varieties through marker-assisted breeding for terminal drought tolerance in sorghum.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-909) contains supplementary material, which is available to authorized users.  相似文献   

8.
An association panel consisting of 185 accessions representative of the barley germplasm cultivated in the Mediterranean basin was used to localise quantitative trait loci (QTL) controlling grain yield and yield related traits. The germplasm set was genotyped with 1,536 SNP markers and tested for associations with phenotypic data gathered over 2?years for a total of 24?year?×?location combinations under a broad range of environmental conditions. Analysis of multi-environmental trial (MET) data by fitting a mixed model with kinship estimates detected from two to seven QTL for the major components of yield including 1000 kernel weight, grains per spike and spikes per m2, as well as heading date, harvest index and plant height. Several of the associations involved SNPs tightly linked to known major genes determining spike morphology in barley (vrs1 and int-c). Similarly, the largest QTL for heading date co-locates with SNPs linked with eam6, a major locus for heading date in barley for autumn sown conditions. Co-localization of several QTL related to yield components traits suggest that major developmental loci may be linked to most of the associations. This study highlights the potential of association genetics to identify genetic variants controlling complex traits.  相似文献   

9.
The highly conserved part of the nucleotide-binding domain of the hsp70 gene family was amplified from the soil diplopod Tachypodoiulus niger (Julidae, Diplopoda). Genomic DNA yielded 701, 549 and 540 bp sequences, whereas cDNA from heat shocked animals produced only one distinct fragment of 543 bp. The sequences could be classified as a 70 kDa heat shock protein (hsp70), the corresponding 70 kDa heat shock cognate (hsc70) and a glucose-related hsp70 homologue (grp78). Comparisons of genomic and cDNA sequences of hsc70 identified two introns within the consensus sequence. Generally, stress-70 expression levels were low, which hampered successful RT-PCR and subsequent subcloning. Following experimental heat shock, however, the spliced hsc70 was amplified predominantly, instead of its inducible homologue hsp70. This finding suggests that microevolution in this soil-dwelling arthropod is directed towards low constitutive stress-70 levels and that the capacity for stress-70 induction presumably is limited. hsc70, albeit having introns, apparently is inducible and contributes to the stress-70 response.  相似文献   

10.
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30 °C) or cold-stressed over-wintering larvae (⩽0 °C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45 °C or as low as −15 °C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination.  相似文献   

11.
A population of 294 recombinant inbred lines (RIL) derived from Yuyu22, an elite maize hybrid extending broadly in China, has been constructed to investigate the genetic basis of grain yield, and associated yield components in maize. The main-effect quantitative trait loci (QTL), digenic epistatic interactions, and their interactions with the environment for grain yield and its three components were identified by using the mixed linear model approach. Thirty-two main-effect QTL and forty-four pairs of digenic epistatic interactions were detected for the four measured traits in four environments. Our results suggest that both additive effects and epistasis (additive × additive) effects are important genetic bases of grain yield and its components in the RIL population. Only 30.4% of main-effect QTL for ear length were involved in epistatic interactions. This implies that many loci in epistatic interactions may not have significant effects for traits alone but may affect trait expression by epistatic interaction with the other loci.  相似文献   

12.
Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, a major limitation of soy proteins is their deficiency in sulfur-containing amino acids, methionine (Met) and cysteine (Cys). The objective of this study was to identify quantitative trait loci (QTL) associated with Met and Cys concentration in soybean seed. To achieve this objective, 101 F6-derived recombinant inbred lines (RIL) from a population developed from a cross of N87-984-16 × TN93-99 were used. Ground soybean seed samples were analyzed for Met and Cys concentration using a near infrared spectroscopy instrument. Data were analyzed using SAS software and QTL Cartographer. RIL differed (P<0.01) in Met and Cys concentrations, with a range of 5.1–7.3 (g kg−1 seed dry weight) for Cys and 4.4–8.8 (g kg−1 seed dry weight) for Met. Heritability estimates on an entry mean basis were 0.14 and 0.57 for Cys and Met, respectively. A total of 94 polymorphic simple sequence repeat molecular genetic markers were screened in the RIL. Single factor ANOVA was used to identify candidate QTL, which were confirmed by composite interval mapping using QTL Cartographer. Four QTL linked to molecular markers Satt235, Satt252, Satt427 and Satt436 distributed on three molecular linkage groups (MLG) D1a, F and G were associated with Cys and three QTL linked to molecular markers Satt252, Satt564 and Satt590 distributed on MLG F, G and M were associated with Met concentration in soybean seed. QTL associated with Met and Cys in soybean seed will provide important information to breeders targeting improvements in the nutritional quality of soybean.  相似文献   

13.
Drought stress was imposed on two sets of Arabidopsis thaliana genotypes grown in sand under short‐day conditions and analysed for several shoot and root growth traits. The response to drought was assessed for quantitative trait locus (QTL) mapping in a genetically diverse set of Arabidopsis accessions using genome‐wide association (GWA) mapping, and conventional linkage analysis of a recombinant inbred line (RIL) population. Results showed significant genotype by environment interaction (G×E) for all traits in response to different watering regimes. For the RIL population, the observed G×E was reflected in 17 QTL by environment interactions (Q×E), while 17 additional QTLs were mapped not showing Q×E. GWA mapping identified 58 single nucleotide polymorphism (SNPs) associated with loci displaying Q×E and an additional 16 SNPs associated with loci not showing Q×E. Many candidate genes potentially underlying these loci were suggested. The genes for RPS3C and YLS7 were found to contain conserved amino acid differences when comparing Arabidopsis accessions with strongly contrasting drought response phenotypes, further supporting their candidacy. One of these candidate genes co‐located with a QTL mapped in the RIL population.  相似文献   

14.
Preharvest sprouting (PHS) is a major constraint to white wheat production. Previously, we mapped quantitative trait loci (QTL) for PHS resistance in white wheat by using a recombinant inbred line (RIL) population derived from the cross Rio Blanco/NW97S186. One QTL, QPhs.pseru-3A, showed a major effect on PHS resistance, and three simple sequence repeat (SSR) markers were mapped in the QTL region. To determine the flanking markers for the QTL and narrow down the QTL to a smaller chromosome region, we developed a new fine mapping population of 1,874 secondary segregating F2 plants by selfing an F6 RIL (RIL25) that was heterozygous in the three SSR marker loci. Segregation of PHS resistance in the population fitted monogenic inheritance. An additive effect of the QTL played a major role on PHS resistance, but a dominant effect was also observed. Fifty-six recombinants among the three SSR markers were identified in the population and selfed to produce homozygous recombinants or QTL near-isogenic lines (NIL). PHS evaluation of the recombinants delineated the QTL in the region close to Xbarc57 flanked by Xbarc321 and Xbarc12. To saturate the QTL region, 11 amplified fragment length polymorphism (AFLP) markers were mapped in the QTL region with 7 AFLP co-segregated with Xbarc57 by using the NIL population. Dissection of the QTL as a Mendelian factor and saturation of the QTL region with additional markers created a solid foundation for positional cloning of the major QTL.  相似文献   

15.
Wollaroi, an Australian durum wheat cultivar, produced a low stripe rust response and the alternative parent Bansi was highly susceptible. The Wollaroi/Bansi recombinant inbred line (RIL) population was phenotyped across three consecutive crop seasons. A genetic map of the Wollaroi/Bansi RIL population comprising 799 markers (diversity arrays technology and simple sequence repeat markers) was used to determine the genomic location of stripe rust resistance genes carried by the cultivar Wollaroi. Composite interval mapping detected three consistent quantitative trait loci (QTL) in chromosomes 2A, 3B and 5B. These QTL were named QYr.sun-2A, QYr.sun-3B and QYr.sun-5B. Another QTL, QYr.sun-1B, was detected only in the 2009 crop season. QTL in chromosomes 1B, 2A, 3B and 5B explained on average 6, 9.3, 26.7 and 8.7 %, respectively, of the variation in stripe rust response. All QTL were contributed by Wollaroi. RILs carrying these QTL singly produced intermediate stripe rust severities ranging from 46.2 to 55.7 %, whereas RILs with all four QTL produced the lowest disease severity (34.3 %). The consistently low stripe rust response of Wollaroi for 20 years demonstrated the durability of the resistance loci involved. The QTL combination detected in this study is being transferred to common wheat.  相似文献   

16.
Stagonospora nodorum glume blotch (SNG), caused by the necrotrophic fungus Stagonospora nodorum, is one of the economically important diseases of bread wheat (Triticum aestivum L.). Resistance to SNG is known to be quantitative and previous studies of a recombinant inbred line (RIL) population identified a major quantitative trait locus (QTL) for resistance to SNG on the short arm of chromosome 3B. To localize this QTL (QSng.sfr-3BS) with high resolution, we constructed a genetic map for the QTL target region using information from sequenced flow-sorted chromosomes 3B of the two parental cultivars ‘Arina’ and ‘Forno’, the physical map of chromosome 3B of cultivar ‘Chinese Spring’ and BAC-clone sequences. The mapping population of near-isogenic lines (NIL) was evaluated for SNG resistance in field infection tests. NILs segregated for disease resistance as well as for plant height; additionally, we observed a high environmental influence on the trait. Our analysis detected a strong negative correlation of SNG resistance and plant height. Further analysis of the target region identified two linked loci associated with SNG resistance. One of them was also associated with plant height, revealing an effect of QSng.sfr-3BS on plant height that was hidden in the RIL population. This result demonstrates an unexpectedly high genetic complexity of resistance controlled by QSng.sfr-3BS and shows the importance of the study of QTL in mendelized form in NILs.  相似文献   

17.
Red sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS). Two test families were developed using the candidate male in 2014 (Fam-2014) and 2015 (Fam-2015). These test families were challenged with RSIV, and phenotypes were evaluated. Then, de novo genome sequences of red sea bream were obtained through next-generation sequencing, and microsatellite markers were searched and selected for linkage map construction. One immune-related gene, MHC class IIβ, was also used for linkage map construction. Of the microsatellite markers searched, 148 and 197 were mapped on 23 and 27 linkage groups in the female and male linkage maps, respectively, covering approximately 65% of genomes in both sexes. One QTL linked to an RSIVD-resistant trait was found in linkage group 2 of the candidate male in Fam-2014, and the phenotypic variance of the QTL was 31.1%. The QTL was closely linked to MHC class IIβ. Moreover, the QTL observed in Fam-2014 was also significantly linked to an RSIVD-resistant trait in the candidate male of Fam-2015. Our results suggest that the RSIVD-resistant trait in the candidate male was controlled by one major QTL closely linked to the MHC class IIβ gene and could be useful for MAS of red sea bream.  相似文献   

18.
The current study employed a high-throughput genome-wide next-generation sequencing-led multiple QTL-seq (mQTL-seq) strategy in two inter- and intra-specific recombinant inbred line (RIL) mapping populations to identify the major genomic regions underlying robust quantitative trait loci (QTLs) regulating plant height in chickpea. The whole genome resequencing discovered 446,475 and 150,434 high-quality homozygous single nucleotide polymorphisms (SNPs) exhibiting polymorphism between tall and dwarf/semi-dwarf mapping parents and bulk/homozygous individuals selected from each of two chickpea RIL populations. These SNP-led mQTL-seq assays in RIL mapping populations scaled-down two longer major genomic regions (1.26–1.34 Mb) underlying robust plant height QTLs into the shorter high-resolution QTL intervals (653.2–756.3 kb) on chickpea chromosomes 3 and 8. This essentially delineated regulatory novel natural SNP allelic variants from brassinosteroid insensitive 1-receptor kinase 1 (BAK1) and gibberellin (GA) 20-oxidase genes governing plant height in chickpea. A strong impact of evolutionary bottlenecks including strong artificial/natural selection on two plant height gene loci during chickpea domestication was observed. The shoot apical meristem-specific expression aside from down-regulation of two plant height genes especially in dwarf/semi-dwarf as compared to tall parents and homozygous mapping individuals of two aforementioned RIL populations was apparent. The integrated genomics-assisted breeding strategy combining mQTL-seq with differential gene expression profiling and functional allelic diversity-based trait domestication study collectively identified potential natural allelic variants of candidate genes underlying major plant height QTLs in chickpea. These functionally relevant molecular signatures can be of immense use for marker-aided genetic enhancement to develop high seed- and pod-yielding non-lodging cultivars restructured with desirable plant height in chickpea.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号