首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The American eastern cherry fruit fly, Rhagoletis cingulata, a pest of cherries in the western hemisphere, invaded Europe in 1983, and since then dispersed to several European countries. Information on the genetics and cytogenetics of this pest is very scarce. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of R. cingulata are presented here. The mitotic metaphase complement consists of six pairs of chromosomes with the sex chromosomes being very small and similar in size. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes (10 polytene arms), which correspond to the five autosomes of the mitotic nuclei and an extrachromosomal heterochromatic mass, which corresponds to the sex chromosomes. The banding patterns and the most characteristic features and prominent landmarks of each polytene chromosome are presented and discussed. Chromosomal homologies between R. cingulata, R. completa and R. cerasi are also proposed, based on the comparison of chromosome banding patterns. Furthermore, the detection and characterization of Wolbachia pipientis in the R. cingulata population studied is presented and the potential correlation with the asynaptic phenomena found in its polytene complement is discussed. In addition, 10 out of 24 microsatellite markers developed for other Rhagoletis species are cross-amplified, evaluated and proposed as useful markers for population and genetic studies in R. cingulata.  相似文献   

2.
The genetic and cytogenetic characteristics of one of the major agricultural pests, the olive fruit fly Bactrocera oleae, are presented here. The mitotic metaphase complement of this insect consists of six pairs of chromosomes including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the polytene complements of three larval tissues, the fat body, the salivary glands and the Malpighian tubules of this pest has shown (a) a total number of five long chromosomes (10 polytene arms) that correspond to the five autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes, (b) the constancy of the banding pattern of the three somatic tissues, (c) the absence of a typical chromocenter as an accumulation of heterochromatin, (d) the existence of reverse tandem duplications, and (e) the presence of toroid tips of the chromosome arms. The in situhybridization of genes or DNA sequences to the salivary gland polytene chromosomes of B. oleaeprovided molecular markers for all five autosomes and permitted the establishment of chromosomal homologies among B. olea, B. tryoniand Ceratitis capitata. The heat shock response of B. oleae, as revealed by heat-inducible puffing and protein pattern, shows a higher thermotolerance than Drosophila melanogaster.  相似文献   

3.
A comparison of the banding patterns of two homologous polytene chromosome arms from the larval salivary gland and ovarian nurse cell complement of Anopheles stephensi is presented. The homologous chromosomes from the somatic larval salivary glands and germ-line derived ovarian nurse cells have essentially the same band-interband organisation. An analysis of the 3H-uridine labelling patterns of a small chromosome segment from the two tissues indicates that germ-line polytene chromosomes are not radically different from somatic polytene chromosomes in their patterns of gene expression.  相似文献   

4.
The European cherry fruit fly, Rhagoletis cerasi, is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the "weak points", and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.  相似文献   

5.
Standard photographic maps of the polytene chromosomes are presented for the melon fly Bactrocera cucurbitae, a serious pest of fleshy fruits and vegetables. Five larval salivary gland polytene chromosomes (10 polytene arms) were isolated, and their characteristic features and landmarks have been recognized. Banding patterns of each of the polytene arms are presented, where variation in band intensity and puffs appear to reflect fundamental differences in chromosomes. The whole polytene genome has been typically mapped by dividing it into 100 sections and the subsections were lettered. The mitotic chromosomes of larval brain ganglia are also examined, five pairs of autosomes and an XX/XY sex chromosome pair. In addition, a heterochromatic mass corresponding to the sex chromosomes are observed in the polytene nuclei of salivary gland tissue. This investigation showed that B. cucurbitae has excellent cytological material for polytene chromosome analysis and proved to be very useful for obtaining more detailed genetic information on the pest's natural populations.  相似文献   

6.
The Oriental fruit fly, Batrocera dorsalis s.s. (Hendel) is one of the most destructive agricultural pests, belonging to a large group of difficult to distinguish morphologically species, referred as the B. dorsalis complex. We report here a cytogenetic analysis of two laboratory strains of the species and provide a photographic polytene chromosome map from larval salivary glands. The mitotic complement consists of six chromosome pairs including a heteromorphic sex (XX/XY) chromosome pair. Analysis of the polytene complement has shown a total of five polytene chromosomes (10 polytene arms) that correspond to the five autosomes. The most important landmarks of each polytene chromosome and characteristic asynapsis at a specific chromosomal region are presented and discussed. Chromosomal homology between B. dorsalis and Ceratitis capitata has been determined by comparing chromosome banding patterns. The detection of chromosome inversions in both B. dorsalis strains is shown and discussed. Our results show that the polytene maps presented here are suitable for cytogenetic analysis of this species and can be used for comparative studies among species of the Tephritidae family. They also provide a diagnostic tool that could accelerate species identification within the B. dorsalis complex and could shed light on the ongoing speciation in this complex. Polytene chromosome maps can facilitate the development of biological control methods and support the genome mapping project of the species that is currently in progress.  相似文献   

7.
Photomaps of the Malpighian tubule and the salivary gland polytene chromosomes of Bactrocera oleae (Dacus oleae) are presented and compared with those of the fat body. Five polytene chromosomes (10 polytene arms) corresponding to the five autosomes of the mitotic nuclei, as well as a heterochromatic mass corresponding to the sex chromosomes, are observed in the nuclei of the three somatic tissues. The most prominent features of each polytene chromosome, the reverse tandem duplications, as well as the rather unusual ectopic pairing of the telomeric regions of different chromosome arms, are described. The constancy of the banding pattern based on the analysis of the three larval tissues is discussed.  相似文献   

8.
A detailed map of the salivary gland chromosomes of Drosophila guanche is presented and compared to the standard gene arrangements of D. subobscura. Generally, the polytene chromosomc banding patterns of the two species show a high degrce of homology. Only Segment I of the sex chromosome (Chromosome A) shows marked differences. The banding pattern proposed for this segment in D. guanche could have originated from a cluster of overlapping inversions including A1 arrangement.  相似文献   

9.
Canio G. Vosa 《Chromosoma》1970,31(4):446-451
Mitotic and salivary gland chromosomes of D. melanogaster show striking fluorescent patterns when stained with Quinacrine. In the salivary gland chromosomes there are up to five strongly fluorescing bands located on the fourth chromosome and at the proximal end of the X chromosome.—In mitotic cells the Y chromosome shows four fluorescent segments and other fluorescent regions are found proximally on the third pair and on the X chromosome. It is, therefore, possible to distinguish male and female interphase cells by their patterns of fluorescence.—A comparison between the position of heterochromatic, late replicating and fluorescing segments in the mitotic chromosomes, shows differences which demonstrate, for the first time, the chemical, morphological and genetical diversity of these three types of segments.  相似文献   

10.
D. G. Bedo  G. C. Webb 《Chromosoma》1989,98(6):443-449
Nucleolar structure was studied in mitotic and three polytene tissues of the Mediterranean fruit fly, Ceratitis capitata using in situ hybridization with a tritium-labelled rDNA probe and silver staining. In mitotic metaphase chromosomes nucleolar organiser regions were localised in the short arms of both sex chromosomes. In polytene nuclei of trichogen cells, salivary glands and fat body rDNA was detected within nucleoli. Nucleoli in these tissues have a similar structure with rDNA labelling concentrated in a central core. Silver staining resulted in very heavy staining of polytene nucleoli and interphase nucleoli in diploid cells. Silver staining of nucleolar organisers in metaphase chromosomes is weak or absent although the X chromosome has numerous dark silver bands in other locations. The results suggest that nucleolar structure is conserved in polytene tissues contrasting with the variability of autosomal banding patterns and sex chromosome structure. They also indicate that silver staining is not necessarily specific for nucleolar regions.  相似文献   

11.
The pairing of polytene chromosomes was investigated in Drosophila melanogaster, Drosophila simulans and their hybrids as well as in species of the D. virilis group and in F1 hybrids between the species of this group. The study of frequency and extent of asynapsis revealed non-random distribution along chromosome arms both in interspecific hybrids and pure Drosophila species. It is suggested that definite chromosome regions exhibiting high pairing frequency serve as initiation sites of synapsis in salivary gland chromosomes.  相似文献   

12.
In otu mutants of Drosophila melanogaster ovarian tumours develop because of the high mitotic activity of the mutant cystocytes; the latter are normally endopolyploid. In certain alleles of otu, however, a varying proportion of the mutant ovarian cystocytes undergo polyteny. Mutant cystocytes with polytene chromosomes are termed pseudonurse cells (PNC). Polytene chromosome morphology and banding patterns in PNC of otu 1/otu3 flies were cytologically analysed. Extensive variability was noted in the quality of the banding pattern of the PNC chromosomes which ranged from highly condensed (condensed PNC chromosomes) to those with a banding pattern (banded PNC chromosomes) similar to that in larval salivary gland cells (SGC). Both the condensed and banded PNC chromosomes frequently enter into a diffuse state characterised by weakened synapsis of the polytene chromatids and alterations in their banding pattern (diffuse PNC chromosomes). Analysis of DNA synthesis patterns in the various morphological forms of PNC polytene chromosomes by 3H-thymidine autoradiography revealed a basic similarity to the pattern seen in polytene nuclei of larval SGC. Independently replicating sites, however, could be unambiguously identified only in banded PNC chromosomes. Comparison of late replicating sites in such PNC chromosomes with those of larval SGC showed a remarkable similarity in the two cell types. These results suggest a close correlation between the polytene chromosome banding pattern and its replicative organization.  相似文献   

13.
A comparative study of fluorescence patterns of heterochromatin in mitotic and polytene chromosomes of seven species belonging to 3 subgroups melanogaster sub-group: D. melanogaster and D. simulans; montium sub-group: D. kikkawai and D. jambulina; ananassae sub-group: D. ananassae, D. malerkotliana and D. bipectinata) of the melanogaster species group of Drosophila (Sophophora) has been made. Hoechst 33258 (H) fluorescence patterns of mitotic chromosomes reveal differences correlated to the taxonomic groupings of these species. The melanogaster sub-group species have H-bright regions on heterochromatin of all chromosomes; the montium subgroup species have H-bright regions mainly on the 4th and Y-chromosomes; in the ananassae sub-group, while D. ananassae chromosomes do not show any H-bright regions, D. malerkotliana and D. bipectinata have small H-bright segments only on their 4th chromosomes. The H-and quinacrine mustard (QM) fluorescence patterns of larval salivary gland polytene chromocentre in these species, however, do not show the same taxonomic correlation. While D. ananassae and D. kikkawai polytene nuclei lack any H-or QMbright region in the chromocentre, the remaining species have prominent H-and/or QM-bright region(s). In D. jambulina, the QM-bright regions are generally bigger than H-bright regions, while in D. malerkotliana and D. bipectinata the situation is reversed. Actinomycin D counterstaining prior to H-staining of polytene preparations of each species confirms that the H-bright region/s in the chromocentre are composed of A-T rich sequences. In vivo labelling of salivary gland polytene nuclei with 5-bromodeoxyuridine for 24 to 48 h and subsequent H-staining reveals that in all the species, the H-bright regions do not replicate in 3rd instar stage and presumably represent the non-replicating alpha heterochromatin. Significantly, in all the species (excepting D. kikkawai and D. ananassae), the size, location and the number of H-and/or QM-bright regions were seen to vary in different polytene nuclei in the same gland. It seems that the organization and the extent of under-replication of alpha heterochromatin varies in different polytene nuclei. Present studies also show that even closely related species differ in the content and organization of H-bright heterochromatin. The 81 F band at the base of 3 R in D. melanogaster, but not in D. simulans, appears to contain non-replicating H-bright sequences in addition to replicating chromatin.  相似文献   

14.
Barbara Meer 《Chromosoma》1976,57(3):235-260
Male hybrids of the cross D. azteca x D. athabasca are larger (hybrid giant males) than their parents, whereas hybrid females are of the same size as the parental species. Microspectrophotometric measurements have shown that the larval polytene salivary gland chromosomes of hybrid giant males undergo one more endoreplication than those of their sisters or parents. Replication patterns of the larval salivary gland chromosomes were compared after pulse labeling with 3H-thymidine and autoradiography. In females of either species as well as of hybrids X-chromosomes and autosomes are equally labeled, i.e. all chromosome arms replicate synchronously. In males, however, often fewer sites are labeled on the X-chromosome than on the autosomes. In addition, in a significant number of nuclei from D. athabasca males and also from hybrid giant males the converse can also be observed: i.e. more sites are labeled on the X-chromosome than on the autosomes. The modified labeling patterns are interpreted as an indication of a time-shift in the replication of hemizygous X-chromosomes in males, in relation to the autosomes.  相似文献   

15.
Daniel G. Bedo 《Chromosoma》1974,48(2):181-190
Salivary gland chromosomes from four populations of Anatopynia dyari were examined together with mitotio and meiotic chromosomes from one of the sites. Both mitotic and meiotic cells possess large blocks of heterochromatin, some of which fluoresce brightly after quinacrine staining. Mitotic figures show twelve chromosomes consisting of a graded size series with 5 meta- and submetacentric pairs and one small telocentric pair. — Salivary gland chromosomes have a loose chromocentre and three distinct size classes of chromosomes. The size classes include 1 long metacentric, 4 medium acrocentrics and 1 very small telocentric which is also twice the thickness of the rest of the complement. Quinacrine staining produces bright fluorescence of the centromeric third of chromosome VI, some ectopically paired regions of the chromocentre, basal bands and the telomeres of some chromosomes. — The discrepancy between arm ratios and relative lengths of mitotic and polytene chromosomes is explained by under-replication of nonfluorescing heterochromatin in the latter case. Brightly fluorescing heterochromatin behaves in an anomalous manner suggesting that it is either over, or else not severely under-replicated in salivary glands. The extra thickness of chromosome VI also suggests that it undergoes an extra round of replication. — A common complex rearrangement was found in the long arm of chromosome III in three of the populations. In the one population tested it was in Hardy Weinberg equilibrium.  相似文献   

16.
Four satellite DNAs in the Anopheles stephensi genome have been defined on the basis of their banding properties in Hoechst 33258-CsCl density gradients. Two of these satellites, satellites I and II, are visible on neutral CsCl density gradients as a light density peak forming approximately 15% of total cellular DNA. Hoechst-CsCl density gradient profiles of DNA extracted from polytene tissues indicates that these satellites are underreplicated in larval salivary gland cells and adult female Malpighian tubules and possibly also in ovarian nurse cells. The chromosomal location of satellite I on mitotic and polytene chromosomes has been determined by in situ hybridisation. Sequences complementary to satellite I are present in approximately equal amounts on a heterochromatic arm of the X and Y chromosomes and are also present, in smaller amounts, at the centromere of chromosome 3. A quantitative analysis of the in situ hybridisation experiments indicates that sequences complementary to satellite I at these two sites differ in their replicative behaviour during polytenisation: heterosomal satellite I sequences are under-replicated relative to chromosome 3 sequences in polytene larval salivary gland and ovarian nurse cell nuclei.  相似文献   

17.
G P Sharma  S M Handa  P Kaur  S Kaur 《Cytobios》1976,17(67-68):183-194
The salivary gland chromosome complement in Lucilia cuprina consists of five pairs of autosomes and two sex chromosomes X and Y, all with characteristic banding patterns. A standard map for the salivary gland chromosomes of this species has been prepared, and compared with the known map of Lucilia cuprina dorsalis from Australia. The differences in their banding patterns indicate the existence of different varieties within the same species.  相似文献   

18.
P. Zhang  A. C. Spradling 《Genetics》1995,139(2):659-670
Peri-centromeric regions of Drosophila melanogaster chromosomes appear heterochromatic in mitotic cells and become greatly underrepresented in giant polytene chromosomes, where they aggregate into a central mass called the chromocenter. We used P elements inserted at sites dispersed throughout much of the mitotic heterochromatin to analyze the fate of 31 individual sites during polytenization. Analysis of DNA sequences flanking many of these elements revealed that middle repetitive or unique sequence DNAs frequently are interspersed with satellite DNAs in mitotic heterochromatin. All nine Y chromosome sites tested were underrepresented >20-fold on Southern blots of polytene DNA and were rarely or never detected by in situ hybridization to salivary gland chromosomes. In contrast, nine tested insertions in autosomal centromeric heterochromatin were represented fully in salivary gland DNA, despite the fact that at least six were located proximal to known blocks of satellite DNA. The inserted sequences formed diverse, site-specific morphologies in the chromocenter of salivary gland chromosomes, suggesting that domains dispersed at multiple sites in the centromeric heterochromatin of mitotic chromosomes contribute to polytene β-heterochromatin. We suggest that regions containing heterochromatic genes are organized into dispersed chromatin configurations that are important for their function in vivo.  相似文献   

19.
Microdissection of the chromocenter of D. virilis salivary gland polytene chromosomes has been carried out and the region-specific DNA library (DvirIII) has been obtained. FISH was used for DvirIII hybridization with salivary gland polytene chromosomes and ovarian nurse cells of D. virilis and D. kanekoi. Localization of DvirIII in the pericentromeric regions of chromosomes and in the telomeric region of chromosome 5 was observed in both species. Moreover, species specificity in the localization of DNA sequences of DvirIII in some chromosomal regions was detected. In order to study the three-dimensional organization of pericentromeric heterochromatin region of polytene chromosomes of ovarian nurse cells of D. virilis and D. kanekoi, 3S FISH DvirIII was performed with nurse cells of these species. As a result, species specificity in the distribution of DvirIII signals in the nuclear space was revealed. Namely, the signal was detected in the local chromocenter at one pole of the nucleus in D. virilis, while the signal from the telomeric region of chromosome 5 was detected on another pole. At the same time, DvirIII signals in D. kanekoi are localized in two separate areas in the nucleus: the first belongs to the pericentromeric region of chromosome 2 and another to pericentromeric regions of the remaining chromosomes.  相似文献   

20.
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n?=?12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号