共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu X Rogers Leonard B Zhu YC Abel CA Head GP Huang F 《Journal of invertebrate pathology》2009,100(1):29-34
Sugarcane borer, Diatraea saccharalis (F.), is a primary corn stalk borer pest targeted by transgenic corn expressing Bacillus thuringiensis (Bt) proteins in many areas of the mid-southern region of the United States. Recently, genes encoding for Cry1A.105 and Cry2Ab2 Bt proteins were transferred into corn plants (event MON 89034) for controlling lepidopteran pests. This new generation of Bt corn with stacked-genes of Cry1A.105 and Cry2Ab2 will become commercially available in 2009. Susceptibility of Cry1Ab-susceptible and -resistant strains of D. saccharalis were evaluated on four selected Bt proteins including Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2. The Cry1Ab-resistant strain is capable of completing its larval development on commercial Cry1Ab-expressing corn plants. Neonates of D. saccharalis were assayed on a meridic diet containing one of the four Cry proteins. Larval mortality, body weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded after 7 days. Cry1Aa was the most toxic protein against both insect strains, followed in decreasing potency by Cry1A.105, Cry1Ac, and Cry2Ab2. Using practical mortality (larvae either died or no significant weight gain after 7 days), the median lethal concentration (LC50) of the Cry1Ab-resistant strain was estimated to be >80-, 45-, 4.1-, and −0.5-fold greater than that of the susceptible strain to Cry1Aa, Cry1Ac, Cry1A.105 and Cry2Ab2 proteins, respectively. This information should be useful to support the commercialization of the new Bt corn event MON 89034 for managing D. saccharalis in the mid-southern region of the United States. 相似文献
2.
Sek Yee Tan Bonifacio F. Cayabyab Edwin P. Alcantara Fangneng Huang Kanglai He Kenneth W. Nickerson Blair D. Siegfried 《Journal of invertebrate pathology》2013
The European (Ostrinia nubilalis Hübner) and Asian corn borers (Ostrinia furnacalis Guenée) are closely related and display similar sensitivity to Cry1 toxins. In this study, we compared the binding patterns of Cry1Ab and Cry1F toxins between both Ostrinia spp., as well as the expression of putative cadherin- and aminopeptidase-N (APN)-like protein receptors. Additionally, cDNA sequences of these putative toxin receptors from both Ostrinia species were compared. Ligand blots for both species indicated a similar binding pattern for Cry1Ab with the strongest immunoreactive band at 260 kDa in both species. In addition, similar expression of the putative cadherin- and APN-like protein receptors were observed at 260 and 135 kDa, respectively. A high degree of similarity (98% amino acid sequence identity) of cDNA sequences for both putative receptor sequences was observed. The Cry1F ligand blot revealed that O. furnacalis and O. nubilalis BBMV exhibited slightly different binding patterns, with strong binding to putative proteins at 150 and 140 kDa, respectively. Both proteins appeared to also bind Cry1Ab, although the signal intensity was much reduced with Cry1Ab. O. furnacalis showed an additional but weaker band at 210 kDa relative to the 150 kDa band. Diatraea saccharalis (Fabricius), which was used as an outgroup species, exhibited different binding patterns than either Ostrinia species, with both Cry1Ab and Cry1F toxins binding to a 210 kDa protein. These results support the previous experiments indicating that O. nubilalis and O. furnacalis share similar patterns of susceptibility to Cry toxins. 相似文献
3.
Youjing Gong 《Journal of invertebrate pathology》2010,104(2):90-96
A field population (SZ) of Plutella xylostella, collected from the cabbage field in Shenzhen, Guangdong Province of China in 2002, showed 2.3-fold resistance to Cry1Aa, 110-fold to Cry1Ab, 30-fold to Cry1Ac, 2.1-fold to Cry1F, 5.3-fold to Cry2Aa and 6-fold resistance to Bacillus thuringiensis var. kurstaki (Btk) compared with a susceptible strain (ROTH). The SZBT strain was derived from the SZ population through 20 generations of selection with activated Cry1Ac in the laboratory. While the SZBT strain developed 1200-fold resistance to Cry1Ac after selection, resistance to Cry1Aa, Cry1Ab, Cry1F, and Btk increased to 31-, 1900-,>33- and 17-fold compared with the ROTH strain. However, little or no cross-resistance was detected to Cry1B, Cry1C and Cry2Aa in the SZBT strain. Genetic cross analyses between the SZBT and ROTH strains revealed that Cry1Ac-resistance in the SZBT strain was controlled by a single, autosomal, incompletely recessive gene. Binding studies with 125I-labeled Cry1Ac showed that the brush border membrane vesicles (BBMVs) of midguts from the resistant SZBT insects had lost binding to Cry1Ac. Allelic complementation tests demonstrated that the major Bt resistance locus in the SZBT strain was same as that in the Cry1Ac-R strain which has “mode 1” resistance to Bt. An F1 screen of 120 single-pair families between the SZBT strain and three field populations collected in 2008 was carried out. Based on this approach, the estimated frequencies of Cry1Ac-resistance alleles were 0.156 in the Yuxi population from Yunnan province, and 0.375 and 0.472 respectively in the Guangzhou and Huizhou populations from Guangdong province. 相似文献
4.
Fangneng Huang B. Rogers Leonard & Xiaoyi Wu 《Entomologia Experimentalis et Applicata》2007,124(1):117-123
The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), strain (F52‐3‐R) was developed from F3 survivors of a single‐pair mating on commercial Cry1Ab Bacillus thuringiensis (Bt) corn plants in the greenhouse. The susceptibility of a Bt‐susceptible and the F52‐3‐R strain of D. saccharalis to trypsin‐activated Cry1Ab toxin was determined in a laboratory bioassay. Neonate‐stage larvae were fed a meridic diet incorporating Cry1Ab toxin at a concentration range of 0.0625 to 32 µg g?1. Larval mortality, larval weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded on the 7th day after inoculation. The F52‐3‐R strain demonstrated a significant level of resistance to the activated Cry1Ab toxin. Larval mortality of the Bt‐susceptible strain increased in response to higher concentrations of Cry1Ab toxin, exceeding 75% at 32 µg g?1, whereas mortality of the F52‐3‐R strain was below 8% across all Cry1Ab concentrations. Using a measure of practical mortality (larvae either died or gained no weight), the median lethal concentration (LC50) of the F52‐3‐R strain was 102‐fold greater than that of the Bt‐susceptible insects. Larval growth of both Bt‐susceptible and F52‐3‐R strains was inhibited on Cry1Ab‐treated diet, but the inhibition of the F52‐3‐R strain was significantly less than that of the Bt‐susceptible insects. These results confirm that the survival of the F52‐3‐R strain on commercial Bt corn plants was related to Cry1Ab protein resistance and suggest that this strain may have considerable value in studying resistance management strategies for Bt corn. 相似文献
5.
Photorhabdus temperata is an entomopathogenic bacterium that is associated with nematodes of the Heterorhabditidae family in a symbiotic relationship. This study investigated the effects of P. temperata infection on the intestinal microbiota of the sugarcane stalk borer Diatraea saccharalis. Histopathology of the infection was also investigated using scanning electron microscopy. Groups of 20 larvae were infected by injection of approximately 50 bacterial cells directly into the hemocoel. After different periods of infection, larvae were dissected and different tissues were used for bacterial cell quantification. P. temperata was highly virulent with an LD50 of 16.2 bacterial cells at 48 h post-infection. Infected larvae started dying as soon as 30 h post-infection with a LT50 value of 33.8 h (confidence limits 32.2–35.6) and an LT90 value of 44.8 h (CL 40.8–51.4). Following death of the larvae, bacteria from the midgut did not invade the hemocoel. In the midgut epithelium, P. temperata occupied the space underneath the basal lamina. The cultivable intestinal bacterial populations decreased as soon as 1 h post-infection and at 48 h post-infection, 90% of the gut microbiota had died. The role of P. temperata in control of the midgut microbiota was discussed. 相似文献
6.
Two novel surface plasmon resonance immunosensors were fabricated for detection of the Bacillus thuringiensis Cry1Ab protein and to demonstrate their performance in analyzing Cry1Ab protein in crop samples. Sensor 2 was modified by 1,6-hexanedithiol, Au/Ag alloy nanoparticles, 3-mercaptopropionic acid, and protein A (or not [sensor 1]), with Cry1Ab monoclonal antibody. As a result, both of the immunosensors exhibited satisfactory linear responses in the Cry1Ab protein concentration ranges of 10 to 500 ng ml−1 and 8 to 1000 ng ml−1, and the detection limits were 5.0 and 4.8 ng ml−1, respectively. The immunosensors possessed good specificity and acceptable reproducibility. In addition, crop samples could be analyzed after a simple treatment. The transgenic crops could be easily identified from the conventional ones by the two immunosensors. 相似文献
7.
Ma XM Liu XX Ning X Zhang B Han F Guan XM Tan YF Zhang QW 《Journal of invertebrate pathology》2008,99(2):123-128
In this study, interactions between Cry1Ac, a toxic crystal protein produced by Bacillus thuringiensis (Berliner), and Beauveria bassiana on the mortality and survival of Ostrinia furnacalis was evaluated in the laboratory. The results showed that Cry1Ac is toxic to O. furnacalis. Not only were larval growth and development delayed, but pupation, pupal weight and adult emergency also decreased when larvae were fed on artificial diet containing purified Cry1Ac toxin. When third instars O. furnacalis were exposed to combination of B. bassiana (1.8 × 105, 1.8 × 106 or 1.8 × 107 conidia ml−1) and Cry1Ac, (0.2 or 0.8 μg g−1), the effect on mortality was additive, however, the combinations of sublethal concentrations showed antagonism between Cry1Ac (3.2 or 13 μg g−1) and B. bassiana (1.8 × 105 or 1.8 × 106 conidia ml−1). When neonates were reared on sublethal concentrations of Cry1AC until the third instar, and survivors exposed B. bassiana conidial suspension, such treatments showed additive effect on mortality of O. furnacalis except for the combination of Cry1Ac (0.2 μg g−1) and B. bassiana (1.8 × 106 conidia ml−1) that showed antagonism. 相似文献
8.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella. 相似文献
9.
In this study, interactions on the mortality and debilitating effects between Cry1Ac, a toxic protein produced by Bacillus thuringiensis (Berliner) and HaCPV (Chinese strain) on first and third instars larvae of Helicoverpa armigera were evaluated in laboratory. When first instar was exposed to combination of Bt cotton leaf discs containing HaCPV (6 × 106, 1 × 107, and 3 × 107 PIB ml−1) the effect on mortality was additive, when such instar larvae exposed to combination of Cry1Ac (0.9, 2.7, or 8.1 μg g−1) and the same concentrations of HaCPV the effect on mortality was additive except for the combination of Cry1Ac (0.3 μg g−1) and HaCPV concentrations that showed synergism. When third instars of H. armigera were infected using a suspension containing both HaCPV and Cry1Ac, most combinations of them showed additive effect except for the combination of Cry1Ac (0.3 μg g−1) and HaCPV (3 × 107 PIB ml−1) that showed synergism. However, when they exposed to Bt cotton leaf discs and HaCPV the effect on mortality was synergism except combination of Bt cotton leaf discs and HaCPV (6 × 106 PIB ml−1) that showed additive. Most of the combinations are showed additive effect in the toxicity and in combinations of Cry1Ac at lowest and HaCPV at highest concentrations synergism is observed. Not only were larval growth and development delayed, but pupation and pupal weight also decreased when larvae were fed on artificial diet containing Cry1Ac and HaCPV or transgenic Bt cotton leaf discs specially in first instar. 相似文献
10.
The analysis of reciprocal genetic crosses between resistant Helicoverpa armigera strain (BH-R) (227.9-fold) with susceptible Vadodara (VA-S) strain showed dominance (h) of 0.65-0.89 and degree of dominance (D) of 0.299-0.782 suggesting Cry1Ac resistance as a semi-dominant trait. The D and h values of F1 hybrids of female resistant parent were higher than female susceptible parent, showing maternally enhanced dominance of Cry1Ac resistance. The progeny of F2 crosses, backcrosses of F1 hybrid with resistant BH-R parent did not differ significantly in respect of mortality response with resistant parent except for backcross with female BH-R and male of F1 (BH-R × VA-S) cross, suggesting dominant inheritance of Cry1Ac resistance. Evaluation of some biological attributes showed that larval and pupal periods of progenies of reciprocal F1 crosses, backcrosses and F2 crosses were either at par with resistant parent or lower than susceptible parent on treated diet (0.01 μg/g). The susceptible strain performed better in terms of pupation and adult formation than the resistant strain on untreated diet. In many backcrosses and F2 crosses, Cry1Ac resistance favored emergence of more females than males on untreated diet. The normal larval period and the body weight (normal larval growth) were the dominant traits associated with susceptible strain as contrast to longer larval period and the lower body weight (slow growth) associated with resistance trait. Further, inheritance of larval period in F2 and backcross progeny suggested existence of a major resistant gene or a set of tightly linked loci associated with Cry1Ac sensitivity. 相似文献
11.
Mélanie Fortier 《生物化学与生物物理学报:生物膜》2007,1768(5):1291-1298
After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed. 相似文献
12.
Eliseu J.G. Pereira Meibao Zhuang Blair D. Siegfried 《Journal of invertebrate pathology》2010,103(1):1-7
The biochemical mechanism of resistance to the Bacillus thuringiensis Cry1F toxin was studied in a laboratory-selected strain of Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) showing more than 3000-fold resistance to Cry1F and limited cross resistance to other Cry toxins. Analyses of Cry1F binding to brush border membrane vesicles of midgut epithelia from susceptible and resistant larvae using ligand immunoblotting and Surface Plasmon Resonance (SPR) suggested that reduced binding of Cry1F to insect receptors was not associated with resistance. Additionally, no differences in activity of luminal gut proteases or altered proteolytic processing of the toxin were observed in the resistant strain. Considering these results along with previous evidence of relatively narrow spectrum of cross resistance and monogenic inheritance, the resistance mechanism in this Cry1F selected strain of O. nubilalis appears to be specific and may be distinct from previously identified resistance mechanisms reported in other Lepidoptera. 相似文献
13.
Carmen Sara Hernández-Rodríguez Hani K. Aldebis Juan Ferré 《Journal of invertebrate pathology》2009,100(2):131-133
The microlepidopteran Prays oleae is one of the main insect pests causing significant crop losses in the Mediterranean olive groves. Bacillus thuringiensis based insecticides are being successfully used to minimize the impact of the second and third generations of this pest. However, because of its very small size and difficulty of rearing, very few studies have been carried out to determine the potency and mode of action of B. thuringiensis Cry proteins in this insect. In this study, Cry1Ac, Cry1Ca, and Cry1Fa proteins were shown to be toxic to third instar larvae of P. oleae. Furthermore, binding assays with 125I-Cry1Ac and brush border membrane vesicles from midguts of last-instar larvae showed specific binding sites for Cry1Ac that are shared, with low affinity, by Cry1Ca and Cry1Fa. 相似文献
14.
Rana M. Sarfraz Veronica Cervantes Judith H. Myers 《Journal of invertebrate pathology》2010,105(2):204-206
Cabbage loopers, Trichoplusia ni, are pests in many agricultural settings including vegetable greenhouses in British Columbia (Canada), where microbial insecticides based on Bacillus thuringiensis (Bt) toxins are commonly used. Frequent use of these insecticides has led to resistance in some populations. An alternative microbial control is the multiple nucleopolyhedrovirus of the alfalfa looper (Autographa californica), AcMNPV which occurs naturally, but at low frequencies in T. ni populations. Bioassays show that T. ni resistant to Bt were twice as susceptible to AcMNPV as were individuals from the Bt-susceptible strain and AcMNPV could be complementary in a resistance management program for T. ni. 相似文献
15.
Priyanka Sharma Vikrant Nain Suman Lakhanpaul 《Journal of invertebrate pathology》2011,106(2):333-335
Maize stem borer (Chilo partellus) is a major insect pest of maize and sorghum in Asia and Africa. Bacillus thuringiensis (Bt) δ-endotoxins have been found effective against C. partellus, both in diet-overlay assay and in transgenic plants. Gene stacking as one of the resistance management strategies in Bt maize requires an understanding of receptor sharing and binding affinity of δ-endotoxins. In the present study, binding affinity of three fluorescein isothiocyanate labeled Cry1A toxins showed high correlation with the toxicity of respective δ-endotoxins. Competitive binding studies showed that Cry1Ab toxins share some of the binding sites with Cry1Aa and Cry1Ac with low affinity and that Cry1Ab may have additional binding sites that are unavailable to the other two toxins tested. 相似文献
16.
Cry1Ia and Cry1Aa proteins exhibited toxicities against Prays oleae with LC50 of 189 and 116 ng/cm2, respectively. The ability to process Cry1Ia11 protoxin by trypsin, chymotrypsin and P. oleae larvae proteases was studied and compared to that of Cry1Aa11. After solubilization under high alkaline condition (50 mM NaOH), Cry1Aa11 was converted into a major fragment of 65 kDa, whereas Cry1Ia11 protoxin was completely degraded by P. oleae larvae proteases and trypsin and converted into a major fragment of 70 kDa by chymotrypsin. Using less proteases of P. oleae juice, the degradation of Cry1Ia11 was attenuated. When the solubilization (in 50 mM Na2CO3 pH 10.5 buffer) and activation were combined, Cry1Ia11 was converted into a proteolytic product of 70 kDa after 3 h of incubation with trypsin, chymotrypsin and P. oleae juice. These results suggest that the in vivo solubilization of Cry1Ia11 was assured by larval proteases after a swelling of the corresponding inclusion due to the alkalinity of the larval midgut. 相似文献
17.
Bacillus thuringiensis Cry1A toxins, in contrast to other pore-forming toxins, bind two putative receptor molecules, aminopeptidase N (APN) and cadherin-like proteins. Here we show that Cry1Ab toxin binding to these two receptors depends on the toxins' oligomeric structure. Toxin monomeric structure binds to Bt-R1, a cadherin-like protein, that induces proteolytic processing and oligomerization of the toxin (Gómez, I., Sánchez, J., Miranda, R., Bravo A., Soberón, M., FEBS Lett. (2002) 513, 242-246), while the oligomeric structure binds APN, which drives the toxin into the detergent-resistant membrane (DRM) microdomains causing pore formation. Cleavage of APN by phospholipase C prevented the location of Cry1Ab oligomer and Bt-R1 in the DRM microdomains and also attenuates toxin insertion into membranes despite the presence of Bt-R1. Immunoprecipitation experiments demonstrated that initial Cry1Ab toxin binding to Bt-R1 is followed by binding to APN. Also, immunoprecipitation of Cry1Ab toxin-binding proteins using pure oligomeric or monomeric structures showed that APN was more efficiently detected in samples immunoprecipitated with the oligomeric structure, while Bt-R1 was preferentially detected in samples immunoprecipitated with the monomeric Cry1Ab. These data agrees with the 200-fold higher apparent affinity of the oligomer than that of the monomer to an APN enriched protein extract. Our data suggest that the two receptors interact sequentially with different structural species of the toxin leading to its efficient membrane insertion. 相似文献
18.
Qing-yun Guo Quan-xin Cai Jian-ping Yan Xiao-min Hu Da-sheng Zheng Zhi-ming Yuan 《Journal of insect physiology》2013
The entomopathogen Bacillus sphaericus is one of the most effective biolarvicides used to control the Culex species of mosquito. The appearance of resistance in mosquitoes to this bacterium, however, remains a threat to its continuous use in integrated mosquito control programs. Previous work showed that the resistance to B. sphaericus in Culex colonies was associated with the absence of the 60-kDa binary toxin receptor (Cpm1/Cqm1), an alpha-glucosidase present in the larval midgut microvilli. In this work, we studied the molecular basis of the resistance developed by Culex quinquefasciatus to B. sphaericus C3-41. The cqm1 genes were cloned from susceptible (CqSL) and resistant (CqRL/C3-41) colonies, respectively. The sequence of the cDNA and genomic DNA derived from CqRL/C3-41 colony differed from that of CqSL one by a one-nucleotide deletion which resulted in a premature stop codon, leading to production of a truncated protein. Recombinant Cqm1S from the CqSL colony expressed in Escherichia coli specifically bound to the Bin toxin and had α-glucosidase activity, whereas the Cqm1R from the CqRL/C3-41 colony, with a deletion of three quarters of the receptor’s C-terminal lost its α-glucosidase activity and could not bind to the binary toxin. Immunoblotting experiments showed that Cqm1 was undetectable in CqRL/C3-41 larvae, although the gene was correctly transcribed. Thus, the cqm1R represents a new allele in C. quinquefasciatus that confers resistance to B. sphaericus. 相似文献
19.
The precise mechanisms underlying Bacillus thuringiensis-mediated killing of pest insects are not clear. In some cases, death may be due to septicaemia caused by Bt and/or gut bacteria gaining access to the insect haemocoel. Since insects protect themselves from microbes using an array of cellular and humoral immune defences, we aimed to determine if a recombinant immunosuppressive wasp venom protein (rVPr1) could increase the susceptibility of two pest Lepidoptera (Lacanobia oleracea and Mamestra brassicae) to Bt. Bio-assays indicated that injection of 6 μl of rVPr1 into the haemocoel of both larvae caused similar levels of mortality (less than 38%). On the other hand, the LD30-40 of Bt for M. brassicae larvae was approximately 20 times higher than that for L. oleracea larvae. Furthermore, in bio-assays where larvae were injected with rVPr1, then fed Bt, a significant reduction in survival of larvae for both species occurred compared to each treatment on its own (P < 0.001); and for L. oleracea larvae, this effect was more than additive. The results are discussed within the context of insect immunity and protection against Bt. 相似文献
20.
Pablo Emiliano Cantón Esmeralda Zanicthe Reyes Iñigo Ruiz de EscuderoAlejandra Bravo Mario Soberón 《Peptides》2011,32(3):595-600
Bacillus thuringiensis subsp. israelensis (Bti) produces at least four different crystal proteins that are specifically toxic to different mosquito species and that belong to two non-related family of toxins, Cry and Cyt named Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa. Cyt1Aa enhances the activity of Cry4Aa, Cry4Ba or Cry11Aa and overcomes resistance of Culex quinquefasciatus populations resistant to Cry11Aa, Cry4Aa or Cry4Ba. Cyt1Aa synergized Cry11Aa by their specific interaction since single point mutants on both Cyt1Aa and Cry11Aa that affected their binding interaction affected their synergistic insecticidal activity. In this work we show that Cyt1Aa loop β6-αE K198A, E204A and β7 K225A mutants affected binding and synergism with Cry4Ba. In addition, site directed mutagenesis showed that Cry4Ba domain II loop α-8 is involved in binding and in synergism with Cyt1Aa since Cry4Ba SI303-304AA double mutant showed decreased binding and synergism with Cyt1Aa. These data suggest that similarly to the synergism between Cry11Aa and Cyt1Aa toxins, the Cyt1Aa also functions as a receptor for Cry4Ba explaining the mechanism of synergism between these two Bti toxins. 相似文献