首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
India experienced two plague outbreaks in Gujarat and Maharastra during 1994 and then in the Shimla district of Himachal Pradesh during 2002. Yersinia pestis strains recovered from rodents and pneumonic patients during the 1994 outbreaks, pneumonic patients from the 2002 Shimla outbreak and rodents trapped on the Deccan Plateau during a surveillance activity carried out in 1998 were characterized by MLVA, ERIC-PCR and ERIC-BOX-PCR. MLVA genotyping of Indian Y. pestis strains revealed strains of 2 Orientalis, 1 Mediaevalis and 1 Antiqua genotypes distributed in three distinct branches corresponding to their biovar. The Orientalis genotype strains recovered from the 1994 outbreaks and 1998 surveillance activity clustered in one branch while the Antiqua biovar strains from the Shimla outbreak and the Mediaevalis strain recovered from a rodent trapped on the Deccan Plateau region during surveillance formed the other branches. The Orientalis Y. pestis strains recovered from rodents and patients from the 1994 plague outbreaks exhibited similar MLVA, ERIC-PCR and ERIC-BOX-PCR profiles and these were closely related to the Orientalis strains recovered from the rodents trapped on the Deccan Plateau. These data provide evidence for the possible linkage between the Y. pestis strains resident in the endemic region and those that were associated with the 1994 plague outbreaks. Mediaevalis and Antiqua biovars also were recovered from the environmental reservoir on the Deccan Plateau and from the pneumonic patients of 2002 plague outbreak. Therefore, as in Central Asian and African regions, Antiqua and Mediaevalis biovars seem to be well established in the Indian subcontinent as well. ERIC-PCR DNA fingerprinting delineated genotypes similar to those defined by MLVA. Thus ERIC-PCR appears to have the potential to be used as a molecular marker in the molecular epidemiological investigations of plague.  相似文献   

2.
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged less than 6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer membrane proteins (Yops), the broad range protease Pla, pathogen-associated molecular patterns (PAMPs) and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and less than 48 h for pneumonic plague). In here, we review recent research advances on Y. pestis evolution, virulence factors function, bacterial strategies to subvert mammalian innate immune responses, vaccination and problems associated to pneumonic plague diagnosis.  相似文献   

3.
The nucleotide sequences of the Tc’s insect toxin complex genes have been analyzed in 18 natural strains of the main and non-main subspecies of Yersinia pestis isolated in different natural foci in the Russian Federation, as well as neighboring and more remote countries, as compared to the data on Y. pestis and Y. pseudotuberculosis strains stored in the NCBI GenBank database. The nucleotide sequences of these genes in plague agent strains have been found to be highly conserved, in contrast to those of the pseudotuberculosis agent. The sequences of two genes, tcaC and tccC2, have been found to be almost identical in Y. pestis strains, whereas other three genes (tcaA, tcaB, and tccC1) contain a few mutations, which, however, are not common for all strains of the plague agent. Exceptions are only strains of the Y. pestis biovar orientalis, whose tcaB gene is in a nonfunctional state due to a nucleotide deletion. The results suggest that the formation of the species Y. pestis as an agent of a natural focal infection with a transmissive mechanism has not resulted in degradation of the Tc’s complex genes. Instead, these genes are likely to have been altered as the plague agent have been adapting to the new environment.  相似文献   

4.

Background  

Yersinia pestis, the causative agent of plague, is a pathogen with a tremendous ability to cause harm and panic in populations. Due to the severity of plague and its potential for use as a bioweapon, better preventatives and therapeutics for plague are desirable. Subunit vaccines directed against the F1 capsular antigen and the V antigen (also known as LcrV) of Y. pestis are under development. However, these new vaccine formulations have some possible limitations. The F1 antigen is not required for full virulence of Y. pestis and LcrV has a demonstrated immunosuppressive effect. These limitations could damper the ability of F1/LcrV based vaccines to protect against F1-minus Y. pestis strains and could lead to a high rate of undesired side effects in vaccinated populations. For these reasons, the use of other antigens in a plague vaccine formulation may be advantageous.  相似文献   

5.
An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica O∶8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 107-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD50 of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the virulence strategies of Y. pestis in nature.  相似文献   

6.
Although Yersinia pestis epidemic biovars and Yersinia pseudotuberculosis are recently diverged, highly related species, they cause different diseases via disparate transmission routes. Since iron transport systems are important for iron acquisition from hosts and for survival in the environment, we have analyzed potential iron transport systems encoded by epidemic and non-epidemic or endemic strains of Y. pestis as well as two virulent Y. pseudotuberculosis strains. Computational biology analysis of these genomes showed a high degree of identity/similarity among 16 proven or possible iron/heme transporters identified. Of these, 7 systems were essentially the same in all seven genomes analyzed. The remaining 9 loci had 2–6 genetic variations among these genomes. Two untested, potential siderophore-dependent systems appear intact in Y. pseudotuberculosis but are disrupted or absent in all the endemic Y. pestis strains as well as the epidemic strains from the antiqua and mediaevalis biovars. Only one of these two loci are obviously disrupted in Y. pestis CO92 (epidemic orientalis biovar). Experimental studies failed to identify a role for hemin uptake systems in the virulence of pneumonic plague and suggest that Y. pestis CO92 does not make a siderophore other than Ybt.  相似文献   

7.
Yersinia pestis causes pneumonic plague, a disease characterized by inflammation, necrosis and rapid bacterial growth which together cause acute lung congestion and lethality. The bacterial type III secretion system (T3SS) injects 7 effector proteins into host cells and their combined activities are necessary to establish infection. Y. pestis infection of the lungs proceeds as a biphasic inflammatory response believed to be regulated through the control of apoptosis and pyroptosis by a single, well-conserved T3SS effector protein YopJ. Recently, YopJ-mediated pyroptosis, which proceeds via the NLRP3-inflammasome, was shown to be regulated by a second T3SS effector protein YopK in the related strain Y. pseudotuberculosis. In this work, we show that for Y. pestis, YopK appears to regulate YopJ-mediated apoptosis, rather than pyroptosis, of macrophages. Inhibition of caspase-8 blocked YopK-dependent apoptosis, suggesting the involvement of the extrinsic pathway, and appeared cell-type specific. However, in contrast to yopJ, deletion of yopK caused a large decrease in virulence in a mouse pneumonic plague model. YopK-dependent modulation of macrophage apoptosis was observed at 6 and 24 hours post-infection (HPI). When YopK was absent, decreased populations of macrophages and dendritic cells were seen in the lungs at 24 HPI and correlated with resolution rather than progression of inflammation. Together the data suggest that Y. pestis YopK may coordinate the inflammatory response during pneumonic plague through the regulation of apoptosis of immune cells.  相似文献   

8.
Yersinia pestis, the causative agent of human bubonic and pneumonic plague, is spread during natural infection by the fleas of rodents. Historically associated with infected rat fleas, studies on the kinetics of infection in rats are surprisingly few, and these reports have focused mainly on bubonic plague. Although the natural route of primary infection results in bubonic plague in humans, it is commonly thought that aerosolized Y. pestis will be utilized during a biowarfare attack. Accordingly, based on our previous characterization of the mouse model of pneumonic plague, we sought to examine the progression of infection in rats exposed in a whole-body Madison chamber to aerosolized Y. pestis CO92. Following an 8.6 LD50 dose of Y. pestis, injury was apparent in the rat tissues based on histopathology, and chemokines and cytokines rose above control levels (1 h post infection [p.i.]) in the sera and organ homogenates over a 72-h infection period. Bacteria disseminated from the lungs to peripheral organs, with the largest increases in the spleen, followed by the liver and blood at 72 h p.i. compared to the 1 h controls. Importantly, rats were as sensitive to pneumonic plague as mice, having a similar LD50 dose by the intranasal and aerosolized routes. Further, we showed direct transmission of plague bacteria from infected to uninfected rats. Taken together, the data allowed us to characterize for the first time a rat pneumonic plague model following aerosolization of Y. pestis.  相似文献   

9.
Yersinia pestis 201 contains 4 plasmids pPCP1, pMT1, pCD1 and pCRY, but little is known about the effects of these plasmids on the dissemination of Y. pestis. We developed a plasmid-based luxCDABE bioreporter in Y. pestis 201, Y. pestis 201-pCD1+, Y. pestis 201-pMT1+, Y. pestis 201-pPCP1+, Y. pestis 201-pCRY+, Y. pestis 201-p and Yersinia pseudotuberculosis Pa36060 strains, and investigated their dissemination by bioluminescence imaging during primary septicemic plague in a mouse model. These strains mainly colonized the livers and spleens shortly after intravenous inoculation. Y. pestis 201-pMT1+ appeared to have a stronger ability to survive in the livers, spleens and blood, and to be more virulent than other plasmid-deficient strains. Y. pestis 201-pPCP1+ appeared to have a stronger ability to colonize lungs than other plasmid-deficient strains. Pa36060 has the strongest ability to colonize intestines and lungs. Y. pestis 201 has the strongest ability to survive in blood, and the strongest virulence. These results indicated that the plasmid pMT1 was an important determinant in the colonization of livers, spleens and blood, whereas the plasmid pPCP1 appeared to correlate with the colonization in lungs. The resistance to killing in mouse blood seemed to be the critical factor causing animal death.  相似文献   

10.
Since the anthrax attacks of 2001, the emphasis on developing animal models of aerosolized select agent pathogens has increased. Many scientists believe that nonhuman primate models are the most appropriate to evaluate pulmonary response to, vaccines for, and treatments for select agents such as Yersinia pestis (Y. pestis), the causative agent of plague. A recent symposium concluded that the cynomolgus macaque (Macaca fascicularis) plague model should be characterized more fully. To date, a well-characterized cynomolgus macaque model of pneumonic plague using reproducible bioaerosols of viable Y. pestis has not been published. In the current study, methods for creating reproducible bioaerosols of viable Y. pestis strain CO92 (YpCO92) and pneumonic plague models were evaluated in 22 Indonesian-origin cynomolgus macaques. Five macaques exposed to doses lower than 250 CFU remained free of any indication of plague infection. Fifteen macaques developed fever, lethargy, and anorexia indicative of clinical plague. The 2 remaining macaques died without overt clinical signs but were plague-positive on culture and demonstrated pathology consistent with plague. The lethal dose of plague in humans is reputedly less than 100 organisms; in this study, 66 CFU was the dose at which half of the macaques developed fever and clinical signs (ED50), The Indonesian cynomolgus macaque reproduces many aspects of human pneumonic plague and likely will provide an excellent model for studies that require a macaque model.Yersinia pestis is the causative agent of plague. Likely more people worldwide have died from Y. pestis infections than from any other single infectious disease.26,27 Bubonic plague, the most common form of the disease, results when the bacterium is inoculated into the skin, typically by means of flea bites. The resulting cutaneous infection spreads to local lymph nodes; the swollen lymph nodes are known as bubos and often serve as a source of systemic infection. Although less common, the bacterium also can spread by aerosol, causing pneumonic plague. Pneumonic plague can result from pulmonary spread of systemic infection or from deliberate dissemination and is associated with nearly 100% human mortality if left untreated. Y. pestis is susceptible to commonly available antibiotics if treatment begins soon after infection. However, depending on the route of infection, the time at which infection is confirmed is often too late for antibiotics to prevent significant morbidity or mortality.10 Because pneumonic plague is the form most likely to be seen in bioterrorism events,16 interest in animal models has arisen to support development of vaccines and improved therapeutics.Potential vaccines and therapeutic agents for plague must protect against the pneumonic disease, but contemporary published data regarding disease pathogenesis using aerosolized Y. pestis pathogenesis in nonhuman primates are scant.4,9,21,23,24 In the United States, when vaccine or antibiotic efficacy cannot be evaluated in humans, an animal species that is reasonably expected to recapitulate human disease must be used.9 For many biothreat agents such as plague, a nonhuman primate model often is required. Although some laboratories have examined the cynomolgus macaque model of aerosolized plague briefly,1 no published reports fully characterize this model. Published studies have examined plague in the African green monkey or vervet (Chlorocebus spp., formerly Cercopithecus aethiops) and rhesus macaque (Macaca mulatta).1 Vervets reportedly are more sensitive to plague than are macaques,4,24 such that some vervets are susceptible to infection with vaccine strains, casting some doubt on applicability of this species for plague studies.1 The disease in rhesus macaques differs from that in humans in that rhesus macaques frequently develop disseminated intravascular coagulation (DIC) and chronic pneumonia as a result of pneumonic plague while humans usually develop acute pneumonia without DIC.1,7Many participants at a recent symposium sponsored by the Food and Drug Administration and National Institute of Allergy and Infectious Disease endorsed the development of a cynomolgus macaque pneumonic plague model to support plague therapeutic and vaccine studies.8 The current study was undertaken to evaluate the Indonesian cynomolgus macaque as a model of aerosolized Y. pestis Colorado 92 (YpCO92) for subsequent vaccine and therapeutic trials. We also sought to determine whether fever development could be used to determine a humane endpoint to the study, as an alternative to LD50 methods.  相似文献   

11.
Yersinia pestis is a Gram-negative bacterium that causes plague. Currently, plague is considered a re-emerging infectious disease and Y. pestis a potential bioterrorism agent. Autotransporters (ATs) are virulence proteins translocated by a variety of pathogenic Gram-negative bacteria across the cell envelope to the cell surface or extracellular environment. In this study, we screened the genome of Yersinia pestis KIM for AT genes whose expression might be relevant for the pathogenicity of this plague-causing organism. By in silico analyses, we identified ten putative AT genes in the genomic sequence of Y. pestis KIM; two of these genes are located within known pathogenicity islands. The expression of all ten putative AT genes in Y. pestis KIM was confirmed by RT-PCR. Five genes, designated yapA, yapC, yapG, yapK and yapN, were subsequently cloned and expressed in Escherichia coli K12 for protein secretion studies. Two forms of the YapA protein (130 kDa and 115 kDa) were found secreted into the culture medium. Protease cleavage at the C terminus of YapA released the protein from the cell surface. Outer membrane localization of YapC (65 kDa), YapG (100 kDa), YapK (130 kDa), and YapN (60 kDa) was established by cell fractionation, and cell surface localization of YapC and YapN was demonstrated by protease accessibility experiments. In functional studies, YapN and YapK showed hemagglutination activity and YapC exhibited autoagglutination activity. Data reported here represent the first study on Y. pestis ATs.  相似文献   

12.

Background

Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined.

Methodology and Principal Findings

The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer''s patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD50 of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD50). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis.

Conclusions and Significance

The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality.  相似文献   

13.
Yersinia pestis, the causative agent of bubonic and pneumonic plague, has a complex lifestyle, cycling between both arthropod and mammalian hosts. This pathogen has previously been shown to survive intracellularly within macrophages and to be capable of biofilm formation within the flea, suggesting the development of a range of strategies to ensure survival throughout its life cycle, including expression of virulence factors and tight regulation of its genes.  相似文献   

14.
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1–V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.  相似文献   

15.
Summary YopM, an effector, YopB, a translator, and LcrV, a regulator, are proteins forming important componants of type III secretion system of Yersinia pestis. Recombinant truncated YopM of 32 kDa, YopB of 28 kDa and LcrV of 31 kDa sizes were utilized for priming BALB/c mice for the generation of monoclonal antibodies following standard poly-ethylene glycol (PEG) fusion protocol. Nine, 10 and 6 stabilized hybridoma cell lines could be generated against YopM, YopB and LcrV proteins, respectively. All these monoclonal antibodies were found reactive to Y. pestis strain A1122 and did not show any cross-reactivity to Y. enterocolitica, Y. pseudotuberculosis, Y. kristensenii, Y. frederiksenii, Y. intermedia, Klebsiella pneumoniae, Escherichia coli, Salmonella typhi, Salmonella abortus-equi and Staphylococcus aureus tested by ELISA and Western blotting. Monoclonal antibodies also exhibited reactivity to their corressponding native protein antigens in Y. pestis i.e. 42 kDa for YopM, 41 kDa for YopB and 37 kDa for LcrV in immunoblotting. Reactivity of monoclonal antibodies was further assessed on 26 Y. pestis isolates including 18 from 1994 plague outbreak regions (11 from pneumonic patients, 7 from rodents) and 8 from rodents of Deccan plateau of Southern India by Western blotting as well as by sandwich ELISA. The monoclonal antibodies could specifically locate the expression of yopM, yopB and lcrV genes among these Indian Y. pestis strains as well. Results obtained with sandwich ELISA and Western blot were identical to those observed by PCR. Monoclonal antibodies to Yops, therefore, can be employed for an early and reliable identification of virulent Y. pestis strains.  相似文献   

16.
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.  相似文献   

17.

Background  

Yersinia pestis is the causative agent of plague and a potential agent of bioterrorism and biowarfare. The plague biothreat and the emergence of multidrug-resistant plague underscore the need to increase our understanding of the intrinsic potential of Y. pestis for developing antimicrobial resistance and to anticipate the mechanisms of resistance that may emerge in Y. pestis. Identification of Y. pestis genes that, when overexpressed, are capable of reducing antibiotic susceptibility is a useful strategy to expose genes that this pathogen may rely upon to evolve antibiotic resistance via a vertical modality. In this study, we explored the use of a multicopy suppressor, Escherichia coli host-based screening approach as a means to expose antibiotic resistance determinant candidates in Y. pestis.  相似文献   

18.
Structural and functional organization of genes responsible for biosynthesis of amino acid methionine, which plays a leading role in cellular metabolism of bacteria, was studied in 24 natural Yersinia pestis strains of the major and non-main subspecies from various natural plague foci located in the territory of Russian Federation and neighbouring foreign countries, and also in Y. pestis and Y. pseudotuberculosis strains recorded in the files of NCBI GenBank database. Conservatism of genes metA, metC, metE, and metH as well as regulatory genes metR and metJ involved in biosynthesis of this amino acid was established. Sequencing of the variable locus of gene metB in natural Y. pestis strains of major and non-main subspecies revealed that the reason for the methionine dependence of strains belonging to the main subspecies is a deletion of a single nucleotide (−G) in the 988 position from the beginning of the gene, whereas this dependence in strains belonging to subspecies hissarica results from the appearance of a single nucleotide (+G) insertion in the 989 position of gene metB. These mutations are absent in strains of the caucasica, altaica, and ulegeica subspecies of the plague agent and in strains of pseudotuberculosis microbe, which correlates with their capacity for methionine biosynthesis.  相似文献   

19.
Background Primary pneumonic plague is rare among humans, but treatment efficacy may be tested in appropriate animal models under the FDA ‘Animal Rule’. Methods Ten African Green monkeys (AGMs) inhaled 44–255 LD50 doses of aerosolized Yersinia pestis strain CO92. Continuous telemetry, arterial blood gases, chest radiography, blood culture, and clinical pathology monitored disease progression. Results Onset of fever, >39°C detected by continuous telemetry, 52–80 hours post‐exposure was the first sign of systemic disease and provides a distinct signal for treatment initiation. Secondary endpoints of disease severity include tachypnea measured by telemetry, bacteremia, extent of pneumonia imaged by chest x‐ray, and serum lactate dehydrogenase enzyme levels. Conclusions Inhaled Y. pestis in the AGM results in a rapidly progressive and uniformly fatal disease with fever and multifocal pneumonia, serving as a rigorous test model for antibiotic efficacy studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号