首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
苦荞种子胰蛋白酶抑制剂的分离纯化及部分性质研究   总被引:14,自引:0,他引:14  
采用凝胶层析及离子交换层析等方法,从苦荞种子中分离出一组胰蛋白酶抑制剂(TBTI-Ⅰ、Ⅱ).对其性质研究表明:两个组分均对胰蛋白酶有较强的抑制作用,对胰凝乳蛋白酶抑制作用较弱,其中TBTI-Ⅱ的抑制作用大于TBTI-Ⅰ,两者对胃蛋白酶、木瓜蛋白酶及枯草杆菌蛋白酶均无抑制作用.用SDS-聚丙烯酰胺凝胶电泳和SephadexG-100凝胶层析分别对纯化产物进行分析得出TBTI-Ⅰ和TBTI-Ⅱ的近似分子量分别为15.0kD和18.0kD.TBTI-Ⅰ、Ⅱ都具有较高的热稳定性,在100℃处理10min后可保留86%左右的抑制活性.TBTI在酸性环境下较为稳定,在pH2.0条件下保温1h,仍保留75%的抑制活性.用Lineveaer-Burk作图法得知,该抑制剂属竞争性抑制类型,TBTI-Ⅱ的Ki值为3.59×10-7mol/L(以BAPNA为底物),对胰蛋白酶的摩尔抑制比为1∶1.4.  相似文献   

2.
The changes in the main storage protein of seeds of buckwheat ( Fagopyrum esculentum Moench cv. Shatilovskaya 5), 13S globulin, were studied during seed germination. During the first three days of germination the 13S globulin is subjected to a limited proteolysis, which consists in the splitting of some of its subunits into large polypeptide fragments. Insignificant changes in the sedimentation coefficient of the 13S globulin during the first days of germination as well as immunochemical data, indicate that the limited proteolysis of the 13S globulin does not cause any major changes in its structure.
Dormant buckwheat seeds contain a proteolytic enzyme (a metalloproteinase), which can cause limited proteolysis of 13S globulin. The proteinase hydrolyzed some subunits of the 13S globulin to high molecular weight fragments. In the presence of sodium dodecylsulphate the electrophoretic pattern of 13S globulin, isolated from 3-day-old buckwheat seedlings, was almost identical to that of 13S globulin from dormant seeds hydrolyzed with metalloproteinase. It is suggested that the proteolysis of 13S globulin observed in vitro may also take place in vivo in the course of seed germination.  相似文献   

3.
Two proteolytic enzymes, a cysteine proteinase and a carboxypeptidase, responsible for breakdown of the main storage protein, 13S globulin, were purified from buckwheat seedlings (Fagopyrum esculentum Moench) by (NH4)2SO4 fractionation, gel-filtration on Sephadex G-150, ionexchange chromatography on DEAE-Toyopearl 650 M and chromatofocusing. The cysteine proteinase was purified 74-fold. It has a pH optimum of 5.5, a pI of 4.5 and an apparent molecular mass (Mr) of 71000. The carboxypeptidase was purified 128-fold. It has a pH optimum of 5.3, a pI of 5.8 and a Mr of 78500. Cysteine proteinase hydrolyzed the modified 13S globulin only if the reaction products were eliminated from the incubation mixture by dialysis. Storage protein degradation by the proteinase increased in the presence of carboxypeptidase. We suggest that the two enzymes complete the digestion of 13S globulin after its preliminary hydrolysis by the earlier described enzyme, metalloproteinase, present in dry buckwheat seeds.Abbreviations BSA bovine serum albumin - DEAE diethylaminoethyl - Mr apparent molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

4.
When the proteinases of the squid mantle muscle were extracted in the presence of dithiothreitol (DTT), the acid proteinase activity increased, indicating that the squid mantle muscle contains a considerable amount of the acid thiol proteinase. The crude extract hydrolyzed neither alpha-N-benzoyl-D,L-arginine-p-nitroanilide (BAPA) nor azocasein, thus refuting the presence of cathepsins B and L in the mantle muscle. The cathepsin D-like proteinase and the acid thiol proteinase were separated by Sephadex A-50 column chromatography. Each of the above partially purified proteinases was able to degrade carp actomyosin at pH 2.5 and 5.0, respectively.  相似文献   

5.
Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.  相似文献   

6.
Thiol proteinase inhibitors in rat serum were purified and their properties were compared with those of rat liver thiol proteinase inhibitor. The inhibitors in rat serum were separated into three forms (S-1, S-2, and S-3) by linear gradient elution from a DE52 column. One inhibitor (S1) was purified to homogeneity by chromatography on ficin-bound Sepharose and Sephadex G-150 columns. The apparent molecular weights of S1, S2, and S3 on Sephadex G-150 columns were 90,000, 95,000, and 160,000, respectively. Serum thiol proteinase inhibitor and liver thiol proteinase differed in the following: 1) all three forms of serum inhibitor had much higher molecular weights than the liver thiol proteinase inhibitor (Mr = 12,500); 2) no cross-reactivity was observed between serum inhibitors and liver inhibitor in tests with either antiserum inhibitor or anti-liver antiserum; 3) both serum inhibitor and liver inhibitor were specific for thiol proteinases, but had different inhibition spectra; 4) the liver inhibitor did not bind to concanavalin A-Sepharose, whereas the serum inhibitor bound and was eluted with alpha-methyl mannoside. A thiol proteinase inhibitor of high molecular weight detected in tissue homogenates inhibited papain markedly but did not inhibit cathepsin H. Its activity was diminished by perfusion of the organ, indicating that it is derived from serum.  相似文献   

7.
An extracellular proteinase from Enterococcus faecalis subsp. liquefaciens has been purified 780-fold by a method including gel filtration on Sephadex G-50 and affinity chromatography with gramicidin J as ligand. Approximately 15% of the original enzyme activity was recovered. A purification of 14,800-fold, with 11.4% yield, may be reached using chromatofocusing as final step in the purification procedure. The molar mass of the enzyme has been estimated to be approximately 30 kDa by Sephadex gel filtration and approximately 26 kDa by SDS-PAGE. The isoelectric point has been found to be 4.6. Maximum enzyme activity of the proteinase has been observed at pH 7.5 and 45 degrees C. The enzyme hydrolyzed bovine serum albumin, alpha-lactoalbumin, beta-lactoglobulin, casein and pork myofibrillar and sarcoplasmic proteins. The extracellular proteinase was very stable; the enzyme maintained its activity in cell-free extracts over a very wide range of temperatures (-25 to 37 degrees C) for at least 2 months. At 12 degrees C, it was stable in the pH range of 5.5 to 8.0.  相似文献   

8.
A serum proteinase inhibitor specific for thiol proteinases was prepared in a functionally pure state by Sephadex G-200 gel filtration, starch block electrophoresis and immunoaffinity chromatography. This component was distinct from the known serum proteinase inhibitors. It was demonstrated by immuno-electrophoresis that the incubated mixture of thiol proteinase and this inhibitor produced a soluble complex possessing both antigenicities. The molecular weight of the inhibitor was found to be 90,000 by gel filtration on Sephadex G-150 column, and the electrophoretic mobility was in the α2-region. A tentative term, α2-thiol proteinase inhibitor, was given because of its mobility and inhibition spectrum.  相似文献   

9.
Poulle M  Jones BL 《Plant physiology》1988,88(4):1454-1460
A proteinase was purified from germinated barley (green malt from Hordeum vulgare L. cv Morex) by acidic extraction, ammonium sulfate fractionation and successive chromatographies on CM-cellulose, hemoglobin sepharose, Sephadex G-75 and organomercurial agarose columns. The overall purification and final recovery were 290-fold and 7.5%, respectively. The purified enzyme was homogeneous on analytical gel electrophoresis, yielding a single protein associated with protease activity. An apparent molecular weight of about 20 kilodaltons was estimated for the native enzyme from gel filtration. SDS-gel electrophoresis revealed a single polypeptide of about 30 kilodaltons. The optimum pH for the hydrolysis of hemoglobin was around 3.8. The enzyme was strongly inhibited by leupeptin but was insensitive to phenylmethylsulfonyl fluoride, indicating that it was a cysteine proteinase. It hydrolyzed several large proteins from various origins. The ability of the enzyme to digest barley storage proteins in vitro was examined using SDS-gel electrophoresis. The hydrolysis patterns obtained showed that the enzyme rapidly hydrolyzed the large hordein polypeptides into relatively small fragments. The results of this study suggest that this 30 kilodalton enzyme is one of the predominant cysteine proteinases secreted into the starchy endosperm during barley germination and that it plays a major role in the mobilization of storage proteins.  相似文献   

10.
The mitoplasts were prepared from bullfrog (Rana catesbeiana) liver mitochondria by treatment with digitonin and were then separated into the matrix and inner membrane fractions. The matrix fraction thus obtained was free of lysosomal contaminations and exhibited a distinct proteinase activity. pH dependency of the matrix proteinase activity measured in the presence and absence of iodoacetamide revealed that the matrix contained at least two kinds of proteinase, a major alkaline thiol proteinase having an optimal pH at 8.5 and a minor neutral proteinase having an optimal pH at 7.5. The major matrix proteinase activity was strongly inhibited by leupeptin, chymostatin, antipain and E64-C, an inhibitor of Ca2+-dependent thiol proteinase, while it was scarcely affected by diethylpyrocarbonate. The activity was also inhibited by DTNB and p-chloromercuribenzoate. Addition of hydrocarbon compounds such as ethylene glycol, glycerol, Triton X-100 and poly (ethylene glycol) to the reaction mixture was found to decrease the matrix proteinase activity. Neither cytochrome c nor glutamate dehydrogenase was hydrolyzed when subjected to the matrix proteinase activity in vitro. On the other hand, cytochrome c oxidase was effectively hydrolyzed, and the enzyme associated with the mitochondrial innermembrane fragments was partially hydrolyzed by the major matrix proteinase activity.  相似文献   

11.
A protease from the lotus seed (Nelumbo nucifera Gaertn) was purified by acid-treatment, ammonium sulfate-fractionation, ethylalcohol-fractionation, TEAE-cellulose-treatment and Sephadex G-100 gel-filtration.

The enzyme was purified about 870-fold and was homogeneous in electrophoretic and ultracentrifugal analyses.

Purified lotus seed protease is an acid protease with a pH optimum at 3.8 toward urea-denatured casein. It is active for casein and hemoglobin. But other proteins such as edestin, zein, lotus seed globulin and soybean casein are slightly hydrolyzed and egg albumin is hardly hydrolyzed. This enzyme is most stable at pH 4.0 below 40°C. The enzyme is not a thiol protease, and its activity was completely inhibited by potassium permanganate, remarkably inhibited by sodium dodecylsulfate and accelerated by hydrogen peroxide.  相似文献   

12.
A proteinase with elastolytic activity was isolated from granules of rabbit bloodstream leukocytes, and purified to apparent homogeneity by a multi-step procedure consisting of ammonium sulfate precipitation, batch fractionation on DEAE-Sephadex A-50, and finally by preparative isoelectric focusing (IEF) on Sephadex G-75 Superfine. The molecule weight of the enzyme, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was 28,500. This enzyme shows an isoelectric point at pH 9.0. The proteinase is active against natural elastins as well as toward Suc-(Ala)3-NA, Methoxy-Suc-(Ala)2-Pro-Val-NA, and (to a lesser extent) against Suc-(Ala)2-Pro-Leu-NA and Boc-Ala-ONp. The inhibition profile of the isolated enzyme indicates that rabbit granulocyte elastase belongs to the group of serine proteinases. Inhibition by some natural proteinase inhibitors is also observed. Unlike other mammalian elastases, it is insensitive to elastatinal.  相似文献   

13.
Succinyltrialanine p-nitroanilide(STANA)-hydrolytic enzyme was purified 5,200-fold from porcine liver soluble fraction with a yield of 75% by ammonium sulfate fractionation and chromatographies on DEAE-Sephacel, Sephadex G-150, and hydroxylapatite columns. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate (SDS). The pI of the enzyme was 4.9 by dis gel electrofocusing and the molecular weight was calculated to be 72,000 by gel filtration on a Sephadex G-150 column and 74,000 by SDS-polyacrylamide gel electrophoresis. Acidic amino acids amounted to 17.2% of the total amino acid residues, and the basic ones, 12.9%. No hexosamine was detected. The STANA-hydrolytic enzyme showed maximal activity at pH 7.4 against succinyltrialanine p-nitroanilide and at pH 6.5 against succinyl-Gly-Pro-4-methylcoumaryl 7-amide (MCA), and was stable between pH 6 and 7 in the presence of dithiothreitol. This enzyme hydrolyzed succinyl-Gly-Pro-Leu-Gly-Pro-MCA, succinyl-Gly-Pro-MCA, succinyl-Ala-Pro-Ala-MCA, and several proline-containing natural peptides in addition to succinyltrialanine p-nitroanilide, but was unable to hydrolyze the substrates of aminopeptidases, dipeptidylaminopeptidase IV, trypsin, and chymotrypsin. Elastatinal and chymostatin were effective inhibitors and their IC50 values were 8.7 micrograms/ml and 18.2 micrograms/ml, respectively. The enzyme was completely inhibited by 10(-7) M p-chloromercuribenzoic acid (pCMB), 10(-7) M p-chloromercuriphenylsulfonic acid (pCMPS), and 10(-4) M diisopropyl phosphofluoridate (DFP), but not by 1 mM E-64, which is known as an inhibitor specific to thiol proteinase. The enzyme was easily inactivated by agitation in a Vortex mixer, and its activity was recovered by the addition of thiol compounds such as dithiothreitol, 2-mercaptoethanol and cysteine. The effects of inhibitors and thiol compounds were substantially identical when the enzyme activity was measured with either succinyltrialanine p-nitroanilide or succinyl-Gly-Pro-MCA as a substrate. These results indicate that the STANA-hydrolytic enzyme in the liver soluble fraction is a post-proline cleaving enzyme [EC 3.4.21.26].  相似文献   

14.
A thiol protease has been isolated and purified from the postribosomal fraction of encysted embryos of the brine shrimp Artemia using a six-step procedure. The purified enzyme has a molecular weight of 55,000 +/- 4,200 and is composed of subunits of Mr 31,500 +/- 559 and 25,867 +/- 1,087. Isoelectric focusing revealed two discrete bands, one at pH 4.6 and the other at pH 5.1. The protease appears to be a member of the thiol group of proteases based on its inhibition by leupeptin, antipain, chymostatin, Ep-475, and several other thiol protease inhibitors. The enzyme was stimulated by heavy metal chelators and thiol reagents. At pH 3.5-4.0 the thiol protease hydrolyzed a wide range of proteins including bovine serum albumin, hemoglobin, Artemia embryo soluble proteins, Artemia lipovitelline, and protamine, whereas at pH 6.0-6.5 the enzyme showed a high degree of specificity for Artemia elongation factor 2 and lipovitelline alpha 1. The total amount of protease activity in crude homogenates of Artemia embryos decreased by about 50% during the first 24 h of development, while the amount of free, active enzyme decreased proportionally for 9 h of development then remained constant during the next 26-27 h of development. These changes in protease activity appear to reflect changing levels of an endogenous protease inhibitor during development.  相似文献   

15.
We report purification of the major digestive proteinase from adult worms of Schistosoma mansoni. This enzyme is a thiol proteinase with a pH optimum of 5 and is activated by thiol reagents. It was purified 300-fold using a combination of gel chromatography and chromatofocusing. It readily hydrolyzed hemoglobin with an apparent Km of 0.29 microM and a specific activity of 27 micrograms degraded/min/mg enzyme at 37 C. Peptides with positively charged amino acids were preferentially cleaved. The enzyme degraded Boc-Arg-Arg-7-amino-4-methyl coumarin with a kcat/Km of 9083 M-1 sec-1. Lengthening the peptide chain to 3 amino acids or substituting glycine for the amino terminal arginine resulted in decreased activity. The enzyme was inhibited by chloromethylketone-derivatized peptides of similar sequence and by leupeptin. The purified proteinase exhibits microheterogeneity in different preparations with forms ranging in molecular weight from 30,000 to 35,000, and pI 5.7-6.0.  相似文献   

16.
An extracellular thiol proteinase was produced by the growth of a thermophilic fungus, Humicola lanuginosa, on a medium containing 2% casein, and was purified to virtual homogeneity by affinity chromatography on organomercurial columns. The essential thiol group for activity was confirmed by the inhibition of the enzyme by p-chloromercuribenzoate and mercuric ions. The enzyme, purified 27-fold from the extracellular fluid, exhibited an Mr of 23700 on gel filtration and sedimentation equilibrium. The H. lanuginosa proteinase preferentially cleaves at the C-terminal end of hydrophobic amino acid residues. This proteinase differed from the plant enzyme papain in its interaction with three affinity matrices and its substrate specificity towards synthetic substrates. This enzyme represents a unique example of a thiol proteinase obtained from a fungal source.  相似文献   

17.
A homogeneous preparation of metalloproteinase, purified 1000-fold, was obtained from buckwheat (Fagopyrum esculentum) seeds. The Mr of the enzyme, determined by SDS/PAGE, was 34,000 (it was 39,000 by gel chromatography). Its pH optimum was 8.0-8.2 with 13 S globulin, from buckwheat seeds, as substrate. Atomic-absorption spectroscopy revealed the presence of one Zn2+ ion per enzyme molecule. The enzyme was completely inhibited by EDTA (1 mM), zincone (1 mM) and 1, 10-phenanthroline (1 mM). The metalloproteinase performed limited proteolysis of the following seed storage proteins: 13 S globulin from buckwheat seeds and 11 S globulin from soybean (Glycine max) seeds. It hydrolysed three peptide bonds formed by the amino groups of Leu15, Tyr16 and Phe25 in the oxidized B-chain of insulin. In its main properties the enzyme is similar to metalloproteinases of animal and bacterial origin.  相似文献   

18.
The proteinase activity present in homogenates of trophozoites of Giardia lamblia, active on azocasein and urea-denaturated hemoglobin, was separated into two different enzymes by a series of purification procedures. These procedures included gel filtration on Fractogel TSK HW-55 (F), organomercurial agarose affinity chromatography, and ion exchange chromatography on DEAE-cellulose. By chromatography on Sephadex G-100, two purified enzymes exhibited relative molecular weights of Mr = 95,000 and 35,000 +/- 10%, respectively. On the basis of inhibition by thiol reagents and abrogation of this effect by dithiothreitol and cysteine, they were identified as cysteine proteinases. Proteinase I (Mr = 95,000) and proteinase II (Mr = 35,000) were active against the beta-chain of insulin releasing characteristic fragments. However, differences in substrate specificities of the two enzymes could be observed by using synthetic peptides that represent sequences 1-6, 8-18, and 20-30 of the insulin beta-chain. Furthermore, the synthetic tetrapeptides Arg-Gly-Phe-Phe, Arg-Gly-Leu-Hyp, and Arg-Arg-Phe-Phe were hydrolyzed by the two proteinases releasing Phe-Phe and Leu-Hyp, respectively. Compared with Arg-Gly-Phe-Phe, the rates of hydrolysis of Arg-Gly-Leu-Hyp and Arg-Arg-Phe-Phe at substrate concentrations of 1 mM were 91% and 63% (proteinase I) and 80% and 57% (proteinase II), respectively.  相似文献   

19.
To degrade storage proteins germinating seeds synthesize proteinases de novo that can be inhibited by thiol-blocking reagents [Baumgartner & Chrispeels (1977) Eur. J. Biochem. 77, 223-233]. We have elaborated a procedure for isolation of such a proteinase from the cotyledons of Phaseolus vulgaris. The purification procedure involved fractionation of the cotyledon homogenate with acetone and with (NH4)2SO4 and successive chromatographies on DEAE-cellulose, activated thiol-Sepharose Sepharose and Sephacryl S-200. The purified enzyme has an Mr of 23,400, proved to be highly specific for the asparagine side chain and blocking of its thiol group resulted in loss of the catalytic activity. The chemical properties of the thiol group of the bean enzyme were investigated by acylation with t-butyloxycarbonyl-L-asparagine p-nitro-phenyl ester and by alkylations with iodoacetamide and iodoacetate. Deviations from normal pH-rate profile were observed, which indicated that the thiol group is not a simple functional group, but constitutes a part of an interactive system at the active site. The pKa value for acylation and the magnitude of the rate constant for alkylation with iodoacetate revealed that the bean proteinase possesses some properties not shared by papain and the other cysteine proteinases studied to date.  相似文献   

20.
An alkaline proteinase produced by Bacillus sp. was purified and crystallyzed through isopropanol or ammonium sulfate precipitation, decolorization with DEAE-cellulose and gel filtration with Sephadex G-100. The optimum pH for caseinhydrolysis was 11.5 and the activity was completely inactivated after incubation with DFP. The specific activity on Hammersten casein was about 4,500 units/mg enzyme protein. The enzyme also hydrolyzed synthetic ester substrate such as Ac-Tyr-OEt, Ac-Phe-OEt or Bz-Met-OMe. The isoelectric point was pH 10.7, and the molecular weight was estimated to be about 17,500 by the sedimentation equilibrium method and 16,000 by gel filtration method. Some physicochemical properties and the amino acid composition of the enzyme were investigated, indicating that the enzyme is distinguishable from alkaline proteinase of Bacillus species so far reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号