首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Comparison of nuclear and microsomal epoxide hydrase from rat liver   总被引:1,自引:0,他引:1  
The specific activities of hydration of nine arene and alkene oxides by purified nuclei prepared from the livers of 3-methylcholanthrene-pretreated rats were found to fall within the range of 2.2 to 9.1% of the corresponding microsomal values. Pretreatment with phenobarbital enhanced both the nuclear and microsomal hydration of phenanthrene-9,10-oxide, benzo(a)pyrene-11,12-oxide, and octene-1,2-oxide. 3-Methylcholanthrene pretreatment enhanced the nuclear hydration of these three substrates by 30–60% but had no significant effect on microsomal hydration. An epoxide hydrase modifier, metyrapone, stimulated the hydration of octene-1,2-oxide by the two organelles to quantitatively similar extents, but affected the nuclear and microsomal hydration of benzo(a)pyrene-4,5-oxide differentially. Cyclohexene oxide also exerted differential effects on nuclear and microsomal epoxide hydrase which were dependent both on the substrate and on the organelle. The inhibition by this agent of nuclear and microsomal epoxide hydrase was quantitatively similar only for a single substrate, benzo(a)anthracene-5,6-oxide. When purified by immunoaffinity chromatography, nuclear and microsomal epoxide hydrases from 3-methylcholanthrene-pretreated rats were shown to have identical minimum molecular weights (? 49,000) on polyacrylamide gels in the presence of sodium dodecyl sulfate. These findings support the assertion that microsomal metabolism can no longer be considered an exclusive index of the cellular activation of polycyclic aromatic hydrocarbons.  相似文献   

2.
The mutagenicity of several K-region arene oxides waas tested in histidine-dependent mutants of Salmonella typhimurium. Benzo(a)pyrene-4,5-oxide and pyrene-4,5-oxide as well as some substituted phenanthrene oxides were mutagenic in strains TA 1538 and TA 98 which detect frame-shift mutagens.Structure-activity relationships are discussed from the standpoint of chemical reactivity. The absence of direct correlation between electrophilic reactivity and mutagenicity may suggest that primilarily physical properties, such as relative position of the epoxide group and molecular shape of arene oxides, are important for the emergence of mutagenicity of arene oxides.  相似文献   

3.
Absolute configurations for the enantiomers of trans-4,5-dihydroxy-4,5-dihydrobenzo[e]pyrene were determined by the exciton chirality method and by correlation of physical properties of their (−)-(menthyloxy)acetyl diesters. Microsomal epoxide hydrolase catalyzed the hydrolysis of K-region arene oxides of benzo[e]pyrene, pyrene, and phenanthrene to trans-dihydrodiols containing 83 %, 86 %, and 42 % of the R,R enantiomer, respectively.  相似文献   

4.
Liver nuclei from 3-methylcholanthrene-treated rats in the presence of NADPH metabolized 3- and 9-hydroxybenzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to products that bound to DNA. Maximal binding was obtained with the dihydrodiol which was approximately 3-fold that with 9-hydroxybenzo[a]pyrene, and 60-fold that with 3-hydroxybenzo[a]pyrene, as substrates. Both 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene and 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene were also extensively metabolized by the nuclear fraction but did not give rise to DNA-binding products.The available evidence suggests that the DNA binding species derived from 9-hydroxy-benzo[a]pyrene is 9-hydroxy-benzo[a]pyrene-4,5-oxide and from 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, as previously observed in different systems, 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene-9,10-oxide.  相似文献   

5.
1. The substrate specificity of membrane-bound and purified epoxide hydrase from rat liver microsomes has been studied. Both enzyme preparations catalyzed the hydration of a variety of alkene oxidase as well as arene oxides of several polycyclic aromatic hydrocarbons. 2. Unlike the membrane-bound enzyme, the rate of hydration for most of the substrates catalyzed by the purified epoxide hydrase was constant for only 1 or 2 min. The addition of dilauroyl phosphatidylcholine or heated microsomes to the incubation mixture extended the linearity of the reaction. 3. When rat liver microsomes were used as the source of the enzyme, the apparent Km values for many of the substrates were dependent on the amount of microsomes used. When purified epoxide hydrase was used as the enzyme source and benzo(a)pyrene 11,12-oxide as substrate, the apparent Km for benzo(a)pyrene 11,12-oxide was independent of enzyme concentration but dependent on added lipid concentration. Thus, in the absence of added dilauroyl phosphatidylcholine or in the presence of this lipid at a concentration below its critical micelle concentration, the observed Km for benzo(a)pyrene 11,12-oxide remained constant. However, when the lipid concentration was greater than the critical micelle concentration, the apparent Km value increased linearly with lipid concentration. These results are consistent with a model based on the partition of lipid-soluble substrate between the lipid micelle and the aqueous medium.  相似文献   

6.
Solubilized cytochrome P-450 monooxygenase and epoxide hydrase activities from rat liver microsomes have been separated by column chromatography. The highly active epoxide hydrase fraction is still contaminated with cytochrome P-450, which has very low monooxygenase activity. The highly purified cytochrome P-450 fraction possesses high monooxygenase activity and is essentially devoid of epoxide hydrase activity. Purification factors for the epoxide hydrase through four purification steps are similar with [3H]styrene oxide, [3H]naphthalene oxide, [3H]cyclohexene oxide, and benzene oxide as substrates. Failure of benzene oxide to inhibit hydration of styrene or naphthalene oxide in the most purified preparations in indicative of the presence of at least two hydrases. These purified cytochrome monooxygenase and hydrase preparations represent valuable tools for the study of the intermediacy of arene oxides in drug metabolism. Thus, with naphthalene, only naphthol is formed with the monooxygenase, while both naphthol and the dihydrodiol are formed in the presence of monooxygenase and hydrase. A convenient radiochemical synthesis of [3H]naphthalene 1,2-oxide and assays for the measurement of the hydration of [3H]naphthalene oxide and benzene oxide, based on differential extractions and high-pressure liquid chromatography, respectively, are described.  相似文献   

7.
Epoxide hydrase and glutathione (GSH) S-transferase activities were measured in subcellular fractions prepared from liver or hepatopancreas and some extrahepatic organs of a number of marine species common to Maine or Florida. These activities were easily detected in the species studied. In fish, hepatic GSH S-transferase activities were normally higher than hepatic epoxide hydrase activities for the alkene oxide (styrene oxide and octene oxide) and arene oxide (benzo[a]pyrene 4,5-oxide) substrates studied, whereas in crustacea, hepatopancreas epoxide hydrase activities were higher than hepatopancreas GSH S-transferase activities with the same substrates. Extrahepatic organs from fish and crustacea usually had higher GSH S-transferase activities than epoxide hydrase activities with the alkene and arene oxide substrates. GSH S-transferase activity was also found in liver or hepatopancreas of every aquatic species studied and in a number of extrahepatic organs, when 1,2-dichloro-4-nitrobenzene or 1-chloro-2,4-dinitrobenzene served as substrate.  相似文献   

8.
A rapid radiometric assay for epoxide hydratase activity has been developed using the highly mutagenic [3H]benzo(a)pyrene 4,5-(K-region-)oxide as substrate. By addition of dimethylsulfoxide after the incubation, conditions were found where the unreacted substrate could be separated from the product benzo(a)pyrene-4,5-dihydrodiol(trans) simply by extraction into petroleum ether. The product is then extracted into ethyl acetate and, radioactivity is measured by scintillation spectrometry. This assay allows a rapid measurement of epoxide hydratase activity with an epoxide derived from a carcinogenic polycyclic hydrocarbon as substrate and is at the same time sensitive enough for accurate determination of epoxide hydratase activity in preparations with extremely low enzyme levels such as rat skin homogenate (8–14 pmol of product/mg of protein/min).  相似文献   

9.
Degradation of Benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1   总被引:2,自引:0,他引:2       下载免费PDF全文
Metabolism of the environmental pollutant benzo[a]pyrene in the bacterium Mycobacterium vanbaalenii PYR-1 was examined. This organism initially oxidized benzo[a]pyrene with dioxygenases and monooxygenases at C-4,5, C-9,10, and C-11,12. The metabolites were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by UV-visible, mass, nuclear magnetic resonance, and circular dichroism spectral analyses. The major intermediates of benzo[a]pyrene metabolism that had accumulated in the culture media after 96 h of incubation were cis-4,5-dihydro-4,5-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-4,5-dihydrodiol), cis-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-11,12-dihydrodiol), trans-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene trans-11,12-dihydrodiol), 10-oxabenzo[def]chrysen-9-one, and hydroxymethoxy and dimethoxy derivatives of benzo[a]pyrene. The ortho-ring fission products 4-formylchrysene-5-carboxylic acid and 4,5-chrysene-dicarboxylic acid and a monocarboxylated chrysene product were formed when replacement culture experiments were conducted with benzo[a]pyrene cis-4,5-dihydrodiol. Chiral stationary-phase HPLC analysis of the dihydrodiols indicated that benzo[a]pyrene cis-4,5-dihydrodiol had 30% 4S,5R and 70% 4R,5S absolute stereochemistry. Benzo[a]pyrene cis-11,12-dihydrodiol adopted an 11S,12R conformation with 100% optical purity. The enantiomeric composition of benzo[a]pyrene trans-11,12-dihydrodiol was an equal mixture of 11S,12S and 11R,12R molecules. The results of this study, in conjunction with those of previously reported studies, extend the pathways proposed for the bacterial metabolism of benzo[a]pyrene. Our study also provides evidence of the stereo- and regioselectivity of the oxygenases that catalyze the metabolism of benzo[a]pyrene in M. vanbaalenii PYR-1.  相似文献   

10.
The polycyclic aromatic hydrocarbon (PAH) benzo[ghi]perylene (BghiP) lacks a "classic" bay-region and is therefore unable to form vicinal dihydrodiol epoxides thought to be responsible for the genotoxicity of carcinogenic PAHs like benzo[a]pyrene. The bacterial mutagenicity of BghiP increases considerably after inhibition of the microsomal epoxide hydrolase (mEH) indicating arene oxides as genotoxic metabolites. Two K-region epoxides of BghiP, 3,4-epoxy-3,4-dihydro-BghiP (3,4-oxide) and 3,4,11,12-bisepoxy-3,4,11,12-tetrahydro-BghiP (3,4,11,12-bisoxide) identified in microsomal incubations of BghiP are weak bacterial mutagens in strain TA98 of Salmonella typhimurium with 5.5 and 1.5 his+-revertant colonies/nmol, respectively. After microsomal activation of BghiP in the presence of calf thymus DNA three DNA adducts were detected using 32P-postlabeling. The total DNA binding of 2.1 fmol/microg DNA, representing 7 adducts in 10(7) nucleotides, was raised 3.6-fold when mEH was inhibited indicating arene oxides as DNA binding metabolites. Co-chromatography revealed the identity between the main adduct of metabolically activated BghiP and the main adduct of the 3,4-oxide. DNA adducts of BghiP originating from the 3,4,11,12-bisoxide were not found. Therefore, a K-region epoxide is proposed to be responsible for the genotoxicity of BghiP and possibly of other PAHs without a "classic" bay-region.  相似文献   

11.
When incubated with a 9,000 x g rat-liver supernatant, benzo(a)pyrene 7,8-diol and benz(a)anthracene 8,9-diol were more active than the parent hydrocarbons in inducing his+ revertant colonies of S. typhimurium TA 100. Benzo(a) pyrene 9,10-diol was less active than benzo(a)pyrene; the K-region diols, benz(a)anthracene 5,6-diol and benzo(a)pyrene 4,5-diol, were inactive. None of the diols was active when the cofactors for the microsomal mono-oxygenase were omitted. The diol-epoxides benzo(a)pyrene 7,8-diol 9,10-oxide, benz(a)anthracene 8,9-diol 10,11-oxide and 7-methylbenz(a)anthracene 8,9-diol 10,11-oxide and the K-region epoxides, benzo(a)pyrene 4,5-oxide and benz(a)anthracene 5,6-oxide, were mutagenic without further metabolism.  相似文献   

12.
Although it has been observed that many epoxides are ultimate mutagens, surprisingly little is known about epoxides to which man may be extensively exposed, e.g., physiological compounds, drugs, drug metabolites and pesticides. We have now investigated 35 such and related epoxides for mutagenicity, using reversion of his?Salmonella typhimurium TA98 and TA100 as biological end-point. None of the tested steroids (12 compounds), vitamin K epoxides (3 compounds) and pesticides (dieldrin, endrin, HEOM (1,2,3,4,9,9-hexachloro-6,7-epoxy-1,4,4a5,6,7,8,8a-octahydro-1,4-methanonaphthalene), heptachlor epoxide) showed any mutagenic activity. Negative results were also obtained with the antibiotics oleandomycin, anti-capsin and asperlin, the cardiotonic drug resibufogenin, the widely used parasympatholytic drugs butylscopolamine and scopolamine, the sedatives valtratum, didovaltratum and acevaltratum, the tranquilizer oxanamide as well as with the drug metabolites carbamazepine 10,11-oxide and diethylstilbestrol α,β-oxide. Three barbiturate epoxides, formed by metabolism of allobarbital, alphenal and secobarbital, caused weak but reproducible mutagenic effects at high concentrations. The cytostatic agent ethoglucide was the only drug having substantial mutagenic activity. Its mutagenic potency was similar to those of the control epoxides styrene 7,8-oxide, p-bromostyrene 7,8-oxide and m-bromostyrene 7,8-oxide, but much lower than those of benzo[a]pyrene 4,5-oxide, benzo[e]pyrene 4,5-oxide and 7,12-dimethylbenz[a]-anthracene 5,6-oxide.Some epoxides were also tested in other Salmonella typhimurium strains or in the presence of rat-liver S9 mix. Positive results were only obtained with compounds that had already been detected as mutagens in the direct test with strain TA100.  相似文献   

13.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

14.
The metabolism of benzo(a)pyrene (BP) by rat liver microsomes has been examined in the presence of competitive (styrene oxide), uncompetitive (3,3,3-trichloropropene oxide, TCPO), and noncompetitive (cyclohexene oxide) inhibitors of arene oxide (AO) hydrase. Formation of BP-dihydrodiols was inhibited selectively, with 9,10-dihydrodiol at the lowest inhibitor concentration, and then 7,8- and 4,5-dihydrodiols were decreased at higher inhibitor concentrations. Increased levels of 9-phenol, 7-phenol, and 4,5-oxide appeared selectively in the same order. Appearance of these alternate products did not quantitatively compensate for the loss of dihydrodiols so that there was a net loss of oxidation products. A 1000-fold increase in the concentration of TCPO did not further inhibit BP oxidation. Formation of quinones and 3-phenol was completely unaffected by the inhibitors. The limiting decrease in BP oxidation products was the same for each inhibitor and was greater for 3-methylcholanthrene-induced microsomes (25–30%) than for phenobarbital-induced microsomes (15–20%), which produced a smaller proportion of dihydrodiols. Several mechanisms for this specific loss of oxide-derived reaction products have been considered. BP-oxidation products, particularly 9-phenol, significantly inhibit BP oxidation; however, this inhibition is nonspecific in that 3-phenol, quinones, and oxide-derived products are all decreased. 9-Phenol was far more effective as an inhibitor than as a substrate. Glutathione conjugation of oxides due to cytosolic contamination was excluded by virtue of the near absence of water-soluble products. Reduction of 4,5-oxide occurred, in the absence of oxygen, at a rate which was about half the rate of BP monooxygenation, but this rate decreased 75-fold in the presence of air. Enhanced reduction of BP-oxides in the presence of hydrase inhibitors can explain the action of these inhibitors on BP oxidation if the reduction of microsomally generated 4,5-oxide is several times faster than reduction of added 4,5-oxide. The selective effect of hydrase inhibitors on different dihydrodiols can be attributed to differences in the relative stabilities of the intermediate oxides. The formation of 4,5-dihydrodiol from BP is relatively insensitive to hydrase inhibitors in comparison to the hydration of added 4,5-oxide; this results from the rate-determining monooxygenation step.  相似文献   

15.
The metabolism of [14C]benzo[a]pyrene by microsomes from the lungs of normal and 3-methylcholanthrene-treated DBA/2J, C57BL/6J, and A/HeJ mouse strains was quantitatively analyzed by high-pressure liquid chromatography. The ratio of dihydrodiols of benzo[a]pyrene to total metabolites formed was greater with lung microsomes than with liver microsomes in all three strains. The ratio of epoxide hydrase to monooxygenase activity in mouse lung was shown to be considerably higher than in mouse liver. Benzo[a]pyrene metabolism by control lung microsomes showed some strain differences. C57BL/6J and A/HeJ mice formed twice as much dihydrodiols as a percentage of total metabolism compared to DBA/2J mice. DBA/2J mice produced somewhat less phenol 2 fraction and considerably more quinone 1 and 2 fractions than the other two mouse strains as a percentage of total metabolism. Treatment of C57BL/6J and DBA/2J mice with 3-methylcholanthrene resulted in a 20-fold increase in the metabolism of benzo[a]pyrene, while A/HeJ mice were induced more than 50-fold. The profiles of metabolites from the 3-methylcholanthrene-induced animals were nearly identical in all three mouse strains.  相似文献   

16.
Rat liver nuclei have 2 to 12% of the corresponding microsomal aryl hydrocarbon hydroxylase, aminopyrine and benzphetamine N-demethylase, NADPH-cytochrome c reductase, and epoxide hydrase activities. Nuclear membranes were prepared from isolated liver nuclei by a sucrose density centrifugation technique. A 2.5- to 10.2-fold increase in the specific enzyme activities was observed in nuclear membrane as compared to intact nuclei. Several properties of the rat liver nuclear membrane and microsomal epoxide hydrase have been compared. Nuclear epoxide hydrase was similar to the corresponding microsomal enzyme in being induced by phenobarbital whereas 3-methylcholanthrene did not produce any effects. Nuclear membrane and microsomal epoxide hydrase were inhibited to a similar degree by 1,1,1-trichloropropene oxide, cyclohexene oxide, an trans-stilbene oxide. The apparent Km value of nuclear membrane epoxide hydrase was 20 μm for benzo(a)pyrene 4,5-oxide, which is 5.5-fold lower than the corresponding microsomal Km value (112 μm). Nuclear membranes were prepared from isolated nuclei of rat kidney, lung, spleen, and heart by the DNase digestion method. Epoxide hydrase activity in intact nuclei was in the following order: kidney > lung ? spleen, or heart. Increases of 2.2- and 2.5-fold in specific epoxide hydrase activity were observed in kidney and lung when nuclear membranes were compared to intact nuclei. DMSO, dimethylsulfoxide  相似文献   

17.
The rate of removal of DNA adducts of several benzo[a]pyrene from nuclear DNA was compared by introducing a microsome-activating system in human fibroblast cells. Conlfuent human fibroblasts were exposed to benzo[a]pyrene in the presence of a microsomal activating system and DNA adducts were formed in the nuclear DNA. The adducts present in DNA were determined after 1 h of incubation and 48 h later. There was no difference in the rate of removal between 7S- and 7R-N2-[10- (7β,8α,9α-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene)yl]deoxyguanosine, 7R-N2-[10(7β,8α,9β,trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene)yl]deoxyguanosine and the covalent adduct of 9-hydroxybenzo[a]pyrene-4,5-epoxide to guanosine. This finding does not agree with the idea that metabolites forming ‘persistent DNA adducts’ are always responsible for the carcinogenicity of their parent compound.  相似文献   

18.
Epoxide hydrase activity, measured with [3H]styrene oxide as substrate, is present in mammalian liver, kidney, lung, intestine and skin. The hepatic level of the enzyme, measured in vitro with [3H]styrene oxide, benzene oxide or naphthalene-1,2-oxide, is elevated substantially by pretreatment of rats with phenobarbital and to a lesser extent by pretreatment with 3-methylcholanthrene. Metyrapone and 1-(2-isopropylphenyl)-imidazole, two monooxygenase inhibitors, activate epoxide hydrase in vitro, but have no demonstrable effect on the enzyme in vivo. 3,3,3-Trichloropropene oxide, a potent in vitro inhibitor of epoxide hydrase, has no effect on monooxygenase activity measured in vitro with [3H]benzenesulfonanilide. Trichloropropene oxide is extremely toxic. In sub-lethal dosages, it does not significantly inhibit epoxide hydrase activity in vivo, although it and several other epoxides do react with and thereby reduce hepatic levels of glutathione. Cyclohexane oxide, another potent in vitro inhibitor of epoxide hydrase, reduces hepatic glutathione levels to 10% of control values. This relatively non-toxic substance should potentiate the hepatotoxicity of chlorobenzene by inhibiting further metabolism of the toxic chlorobenzene oxide intermediate through either hydration or conjugation with glutathione. Instead, co-administration of cyclohexene oxide and chlorobenzene significantly reduces the rate of metabolism of [14C]chlorobenzene and prevents the hepatic centrilobular necrosis caused by chlorobenzene in rats. Arene oxide-mediated hepatotoxicity apparently is dependent upon a variety of factors including both rates of formation and degradation of arene oxides in tissue. The presently known hydrase inhibitors are not sufficiently selective in their effects on liver cells to permit a quantitative assessment of the relative importance of these factors.  相似文献   

19.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

20.
Phenanthrene and 9 K-region derivatives, most of them potential metabolites of phenanthrene, were tested for mutagenicity by the reversion of histidine-dependent Salmonella typhimurium TA1535, TA1537, TA1538, TA98 and TA100 and the rec assay with Bacillus subtilis H17 and M45. The strongest mutagenic effects in the reversion assay were observed with phenanthrene 9,10-oxide, 9-hydroxyphenanthrene and N-benzyl-phenanthrene-9,10-imine. Interestingly, the mutagenic potency of the arene imine was similar to that of the corresponding arene oxide. This is the first report on the mutagenicity of arene imine. The mutagenic effects of all these phenanthrene derivatives were much weaker than that of the positive control benzo[a]pyrene 4,5-oxide. Even weaker mutagenicty was found with cis-9,10-dihydroxy-9,10-dihydrophenanthrene and with trans-9,10-dihydroxy-9-10-dihydrophenanthrene. The other derivatives were inactive in this test. However, 9-10-dihydroxyphenanthrene and 9,10-phenanthrenequinone were more toxic to the rec- B. subtilis M45 strain than to the rec+ H17 strain. This was also true for phenanthrene 9,10-oxide and 9-hydroxyphenanthrene, but not with the other test compounds that reverted (9,10-dihydroxy-9,10-dihydrophenanthrenes; N-benzyl-phenanthrene 9,10-imine; benzo[a]pyrene 4,5-oxide) or did not revert (phenanthrene, 9,10-bis-(p-chlorophenyl)-phenanthrene 9,10-oxide, 9-10-diacetoxyphenanthrene) the Salmonella tester strains. Although the K region is a main site of metabolism and although all potential K-region metabolites were mutagenic, phenanthrene did not show a mutagenic effect in the presence of mouse-liver microsomes and an NADPH-generating system under standard conditions. However, uhen epoxide hydratase was inhibited, phenanthrene was activated to a mutagen that reverted his- S. typhimurium. This shows that demonstration of the mutagenic activity of metabolites together with the knowledge that a major metabolic route proceeds via these metabolites dose not automatically imply a mutagenic hazard of the mother compound, because the metabolites in question may not accumulate in sufficient quantities and therefore the presence and relative activities of enzymes that control the mutagenically active metabolites are crucial. N-Benzyl-phenanthrene 9.10-imine was mutagenic for the episome-containing S. typhimurium TA98 and TA100 but not for the precursor strains TA1538 and TA1535. This arene imine would therefore be useful as a positive control during routine testing to monitor in the former strains the presence of the episome which is rather easily lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号