首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF β-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transtormed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Analysis of a transformed cell line using antisense c-fos RNA   总被引:2,自引:0,他引:2  
Simian sarcoma virus (SSV)-infected NIH-3T3 cells (SSV-NIH-3T3), express a homologue of platelet-derived growth factor, (PDGF) a powerful inducer of the c-fos gene. We have used these cells to test the hypothesis that autocrine stimulation by PDGF-like molecules leads to c-fos expression which is functional in the transformed phenotype. We have transfected SSV-NIH-3T3 cells with a c-fos antisense-RNA expression vector, pSVsof, or control plasmids. pSVsof-transfected cells exhibit markedly decreased c-fos mRNA and protein levels, restored density-dependent growth arrest and reduced (three of five clones) tumorigenicity compared to control lines. The results confirm that c-fos cooperates in the transformed phenotype of SSV-NIH-3T3 cells.  相似文献   

3.
Transforming growth factor-alpha (TGF-alpha) and its receptor are frequently co-expressed in high-grade astrocytomas, suggesting a role for TGF-alpha autocrine/paracrine loops in the malignant progression of astrocytomas. To identify genes that may be critical in mediating TGF-alpha impact on the malignant progression of astrocytomas, we have used cDNA arrays to investigate TGF-alpha effects on the gene expression profile of U-373 MG glioblastoma cells. We found that in these cells approximately 50% of the TGF-alpha regulated genes code for cell motility/invasion-related proteins. TGF-alpha action on the expression of four of these proteins, alpha-catenin, IQGAP1, RhoA, and cadherin-11, was further investigated by immunoblotting in four astrocytoma cell lines and in normal astrocytes. The results demonstrate that the effects of TGF-alpha on IQGAP1, alpha-catenin, and RhoA expression are cell-line dependent. On the other hand, under TGF-alpha treatment, cadherin-11 expression is consistently decreased in all astrocytoma cell lines tested but is increased in normal astrocytes. In addition, we found that cadherin-11 is consistently down-regulated in astrocytomas versus normal brain tissues. Altogether, these results suggest that the down-regulation of cadherin-11 is a frequent molecular event in the neoplastic transformation of astrocytes and that this down-regulation may be initiated and/or amplified by TGF-alpha autocrine/paracrine loops during tumor progression.  相似文献   

4.
An important question regarding autocrine transformation by v-sis is whether intracellularly activated PDGF receptors are sufficient to transform cells or whether activated receptor-ligand complexes are required at the cell surface. We have addressed this question by inhibiting cell surface transport of a membrane-anchored v-sis protein utilizing the ER retention signal of the adenoviral transmembrane protein E3/19K. A v-sis fusion protein containing this signal was retained within the cell and not transported to the cell surface as confirmed by immunofluorescent localization experiments. Also, proteolytic maturation of this protein was suppressed, indicating inefficient transport to post-Golgi compartments of the secretory pathway. When compared with v-sis proteins lacking a functional retention signal, the ER-retained protein showed a diminished ability to transform NIH 3T3 cells, as measured by the number and size of foci formed. In newly established cell lines, the ER-retained protein did not down-regulate PDGF receptors. However, continued passage of these cells selected for a fully transformed phenotype exhibiting downregulated PDGF receptors and proteolytically processed v-sis protein. These results indicate that productive autocrine interactions occur in a post-ER compartment of the secretory pathway. Transport of v-sis protein beyond the Golgi correlated with acquisition of the transformed phenotype. Furthermore, suramin treatment reversed transformation and upregulated the expression of cell surface PDGF receptors, suggesting an important role for receptor-ligand complexes localized to the cell surface.  相似文献   

5.
The partition of normal and malignantly transformed fibroblast lines and cell lines initiated from malignant human astrocytomas and a benign ganglioneuroma has been examined in aqueous dextran-polyethylene glycol phase system containing phosphate buffer with a low phosphate/sodium chloride ratio. The malignant astrocytomas showed a significantly lower partition coefficient as compared with the benign ganglioneuroma. Treatment of astrocytoma cells with dexamethasone caused an increase in the partitioning of the cell population. No differences were found in the partition behaviour of normal BHK-21 cells and their malignant transformants, the TRES fibrosarcoma cells. Polyoma and simian virus-transformed 3T3 fibroblasts showed partition ratios similar to the untransformed cells. Dexamethasone pre-treatment had no effect on the partition behaviour of these cells. The significance of these observations has been discussed in relation to the surface hydrophobicity and the neoplastic state.  相似文献   

6.
7.
Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis and progression of malignant brain tumors. Given the significance of tumor microenvironment in general, and the established role of paracrine VEGF signaling in glioblastoma (GBM) biology in particular, we explored the potential autocrine control of human astrocytoma behavior by VEGF. Using a range of cell and molecular biology approaches to study a panel of astrocytoma (grade III and IV/GBM)-derived cell lines and a series of clinical specimens from low- and high-grade astrocytomas, we show that co-expression of VEGF and VEGF receptors (VEGFRs) occurs commonly in astrocytoma cells. We found VEGF secretion and VEGF-induced biological effects (modulation of cell cycle progression and enhanced viability of glioblastoma cells) to function in an autocrine manner. Morevover, we demonstrated that the autocrine VEGF signaling is mediated via VEGFR2 (KDR), and involves co-activation of the c-Raf/MAPK, PI3K/Akt and PLC/PKC pathways. Blockade of VEGFR2 by the selective inhibitor (SU1498) abrogated the VEGF-mediated enhancement of astrocytoma cell growth and viability under unperturbed culture conditions. In addition, such interference with VEGF-VEGFR2 signaling potentiated the ionizing radiation-induced tumor cell death. In clinical specimens, both VEGFRs and VEGF were co-expressed in astroglial tumor cells, and higher VEGF expression correlated with tumor progression, thereby supporting the relevance of functional VEGF-VEGFR signaling in vivo. Overall, our results are consistent with a potential autocrine role of the VEGF-VEGFR2 (KDR) interplay as a factor contributing to malignant astrocytoma growth and radioresistance, thereby supporting the candidacy of this signaling cascade as a therapeutic target, possibly in combination with radiotherapy.  相似文献   

8.
A non-receptor-binding mutant of the platelet-derived growth factor (PDGF) A chain, PDGF-0, was generated by exchanging 7 amino acids in the sequence. The mutant chains formed dimers that were similar to wild-type PDGF-AA with regard to stability and rate of processing to the mature 30-kDa secreted forms. Moreover, the mutant chains formed disulfide-bonded heterodimers with the PDGF B chain in NIH 3T3 cells heterodimer underwent the same processing and secretion as PDGF-AB. Transfection of c-sis-expressing 3T3 cells with PDGF-0 significantly inhibited the transformed phenotype of these cells, as determined by the following criteria. (i) Compared with PDGF-0-negative clones, PDGF-0-producing clones showed a reverted morphology. (ii) Clones producing PDGF-0 grew more slowly than PDGF-0-negative clones, with a fivefold difference in cell number after 14 days in culture. (iii) The expression of PDGF-0 completely inhibited the ability of the c-sis-expressing 3T3 cells to form colonies in soft agar; this inhibition was overcome by the addition of recombinant PDGF-BB to the culture medium, showing that the lack of colony formation of these cells was not due to a general unresponsiveness to PDGF. The specific expression of a PDGF-0/PDGF wild-type heterodimer in COS cells revealed that the affinity of the mutant heterodimer for the PDGF alpha receptor was decreased by approximately 50-fold compared with that of PDGF-AA. Thus, we show that a non-receptor-binding PDGF A-chain mutant neutralizes in a trans-dominant manner the autocrine transforming potential of the c-sis/PDGF B chain by forming low-affinity heterodimers with wild-type PDGF chains. This method of specifically antagonizing the effect of PDGF may be useful in investigations of the role of PDGF in normal and pathological conditions.  相似文献   

9.
The roles of the large T and small t antigens of simian virus 40 in cellular DNA synthesis and cell division were analyzed in BALB/c 3T3 mouse cells transformed by wild-type, temperature-sensitive A (tsA), or tsA-deletion (tsA/dl) double mutants. Assessment of DNA replication and cell cycle distribution by radioautography of [3H]thymidine-labeled nuclei and by flow microfluorimetry indicate that tsA transformants do not synthesize DNA or divide at the restrictive temperature to the same extent as they do at the permissive temperature or as wild-type transformants do at the restrictive temperature. This confirms earlier studies suggesting that large T induces DNA synthesis and mitosis in transformed cells. Inhibition of replication in tsA transformants at the restrictive temperature, however, is not complete. Some residual cell division does occur but is in large part offset by cell detachment and death. This failure to revert completely to the parental 3T3 phenotype, as indicated by residual cell cycling at the restrictive temperature, was also observed in cells transformed by tsA/dl double mutants which, in addition to producing a ts large T, make no small t protein. Small t, therefore, does not appear to be responsible for the residual cell cycling and plays no demonstrable role in the induction of DNA synthesis or cell division in stably transformed BALB/c 3T3 cells. Comparison of cell cycling in tsA and tsA/dl transformants, normal 3T3 cells, and a transformation revertant suggests that the failure of tsA transformants to revert completely may be due to leakiness of the tsA mutation as well as to a permanent cellular alteration induced during viral transformation. Finally, analysis of cells transformed by tsA/dl double mutants indicates that small t is not required for full expression of growth properties characteristic of transformed cells.  相似文献   

10.
Phosphoinositide 3OH-kinases (PI3K) are a family of lipid kinases that activates signalling pathways important for migration, cytoskeletal rearrangements, and cell survival. These processes are important hallmarks in transformation. We have evaluated the functional role of PI3K for development of a transformed morphology and migratory responses of murine fibroblasts (NIH/sis and COL1A1/NIH3T3 cell lines) stimulated in an autocrine fashion by constitutive expression of platelet-derived growth factor-BB (PDGF-BB). We show that prolonged treatment with the specific PI3K inhibitor LY294002, induced a reversion of the transformed morphology, and prevented density-independent growth and focus formation. Functional PI3K was also required for development of the transformed morphology of NIH/sis and COL1A1/NIH3T3. Furthermore, treatment with LY294002 completely perturbed random migration of the cells. In addition our data show that, in the signalling pathways downstream of PI3K, activation of the small GTPase Rac was a prerequisite for the transformation signal. Our data also indicate the presence of a suramin-insensitive PI3K activity. Most likely this was due to the presence of a suramin-insensitive intracellular PDGFR pool that allowed activation of PI3K located in intracellular compartments. In conclusion these data show that intact PI3K activity was required for the morphological alterations and the enhanced migratory response that are hallmarks for PDGF induced autocrine transformation.  相似文献   

11.
Platelet-derived growth factor in human malignancy.   总被引:7,自引:0,他引:7  
Platelet-derived growth factor (PDGF) was first implicated in the process of transformation when one of its peptide chains was found to be homologous to the viral sis oncogene (v-sis). Since that time, there have been multiple demonstrations of the transforming activity of v-sis in fibroblasts. Because of the near identity of the v-sis protein with the PDGF B chain, v-sis is thought to transform through an autocrine stimulatory mechanism of cell growth. Consistent with this view are studies which demonstrate inhibition of v-sis-mediated transformation by anti-PDGF antibodies. Expression of the cellular sis gene (c-sis) and its receptors, and secretion of PDGF-like factors have been demonstrated in many types of human malignant cells. Nevertheless, a causative role for c-sis in inducing or maintaining the transformed phenotype in human malignancies remains to be established. There are significant differences in structure between v-sis and c-sis. Studies of transforming ability have yielded conflicting results in transfection models, depending on the transfected vector and target cell type utilized. While there is compelling evidence for the involvement of PDGF in an autocrine growth mechanism in transformed fibroblasts, the evidence in human epithelial tumor types is less convincing because PDGF receptors are usually not detectable on the cell surface. The recent demonstration of intracellular co-localization of active PDGF precursors and PDGF receptors, however, supports the existence of an internal autocrine pathway independent of PDGF secretion. Further investigation of such a mechanism in de novo human malignancies is warranted to establish the role of PDGF in the development of these neoplasms.  相似文献   

12.
13.
NIH3T3 cells transformed by mouse Int-2/Fgf-3 cDNA express a series of Int-2-related products representing discrete stages of processing and glycosylation. We confirm that in at least two highly transformed clonal lines, Int-2 products acquire further modifications and are efficiently secreted into the culture medium. Secreted proteins become associated with the cell surface and extracellular matrix and can be displaced by addition of soluble glycosaminoglycans, specifically heparin, heparan sulfate, and dermatan sulfate. Increasing concentrations of heparin not only compete for Int-2 binding in a dose-dependent manner but also inhibit the growth of these cells and revert the transformed phenotype. These findings reaffirm the notion that extracellular or surface-bound Int-2 protein is instrumental in the morphological transformation of these cells.  相似文献   

14.
PDGF acts as an autocrine and paracrine factor in certain tumors through upregulation of the PDGF beta-receptor expression. In order to elucidate the control mechanism for the receptor expression, we have isolated an enhancer from two P1 clones that together contain a 102 kb NotI region covering the entire human PDGFRB gene. They were partially digested with TspI and cloned into the PDGFRB enhancer trap vector to make a library for identification of enhancers. The digested DNA containing enhancer was identified by expression of GFP when transfected in PDGF beta-receptor expressing cells. One of the enhancer clones was further examined by making several deletion mutants in a luciferase vector. This enhancer was most active in neuroblastoma cells, IMR32 and BE2, but less active in hemangioma and in smooth muscle cell lines. Chip assay revealed that SP1, AP2, and GATA2 bound the enhancer in BE2 cells. Their interaction occurred dependently of the cell cycle and synchronously with their binding to the promoter. Transfection of GATA2 alone or with Ets, which binds adjacent to GATA, resulted in differentiation of BE2 cells in parallel with increased PDGF beta-receptor expression. Furthermore, over-expression of the PDGF beta-receptor in BE2 cells induced neurite extension.  相似文献   

15.
16.
We have previously reported that c-met protooncogene, a member of a new class of receptor tyrosine-kinase gene family, is transforming when overexpressed in NIH-3T3 cells. In this paper, we report that the c-met protooncogene-transformed cells proliferate in a serum- and growth factor-free medium and exhibit constitutive tyrosine phosphorylation of several cellular proteins including the met protooncogene-encoded p145 and p185. Further investigations revealed platelet-derived growth factor (PDGF)-independent phosphorylation of PDGF-β receptors in the transformed cells. Phosphoamino acid analysis revealed phosphorylation of PDGF receptors at tyrosine and serine residues. The PDGF receptor phosphorylation is unlikely to occur via autocrine production of PDGF since we could not detect PDGF activity both at the RNA level and at a functional protein level. Additionally, phospholipase C-γ (PLC-γ) a substrate of activated PDGF receptors, was found to be physically associated with PDGF receptors in the absence of PDGF stimulation in (transformed cells. Furthermore, PDGF receptors coimmunoprecipitated along with PLC-γ. Taken together, our results demonstrate a PDGF-independent phosphorylation and activation of PDGF-β receptor in NIH-3T3 cells transformed by c-met protooncogene.  相似文献   

17.
The K-fgf/hst oncogene encodes a secreted growth factor of the fibroblast growth factor (FGF) family. The ability of K-fgf-transformed cells to grow in soft agar and in serum-free medium is inhibited by anti-K-FGF neutralizing antibodies, consistent with an autocrine mechanism of transformation. The transformed properties of clones that express high levels of K-FGF are, however, only partially affected. To better define the autocrine mechanism of transformation by K-fgf and to determine whether receptor activation could occur intracellularly, we constructed two mutants of the K-fgf cDNA. Deletion of the sequences encoding the signal peptide suppressed K-fgf ability to induce foci in NIH 3T3 cells. A few morphologically transformed colonies were observed in cotransfection experiments, and they were found to express high levels of cytoplasmic K-FGF. However, their ability to grow in serum-free medium and in soft agar was inhibited by anti-K-FGF antibodies. Addition of a sequence encoding the KDEL endoplasmic reticulum and Golgi retention signal to the K-fgf cDNA led to accumulation of the growth factor in intracellular compartments. The ability of the KDEL mutant to induce foci in NIH 3T3 cells was much lower than that of the wild-type cDNA, and also in this case the transformed phenotype was reverted by anti-K-FGF antibodies. These and other findings indicate that the transformed phenotype of cells expressing a nonsecretory K-FGF is due to the extracellular activation of the receptor by the small amounts of growth factor that these cells still release. Thus, transformation by K-fgf appears to be due to an autocrine growth mechanisms that requires activation of the mitogenic pathway at the cell surface.  相似文献   

18.
ST2-3T3, a spontaneously transformed BALB/c-3T3 cell line which does not require platelet-derived growth factor (PDGF) for growth, was fused to THO2, a PDGF-responsive non-transformed BALB/c-3T3 cell line, in order to learn whether transformation is expressed coordinately with PDGF independence. Hybrid cells were selected and grown in medium containing both HAT (hypoxanthine-aminopterin-thymidine) and ouabain; unfused cells of each parental type were killed in HAT-ouabain medium. Five independently isolated ST2-3T3xTHO2 hybrid cell lines were established and characterized for both transformation and PDGF responsiveness. All five were transformed, having a disorganized growth pattern and achieving a final cell density similar to that of ST2-3T3 cells. Two of these lines did not respond to a brief treatment with PDGF: the mitogen neither induced the synthesis of a PDGF-modulated lysosomal protein (termed MEP), nor stimulated the cells to enter the S phase; one line responded to PDGF by synthesizing both MEP and DNA, whereas two others synthesized MEP but not DNA. In contrast, four independently isolated cell lines obtained by fusing PDGF-responsive non-transformed BALB/c-3TC cells to the THO2 line were all PDGF-responsive for both MEP and DNA synthesis and were not transformed. It appears that PDGF independence is not required for the transformation of BALB/c-3T3 cells.  相似文献   

19.
Cucumber mosaic virus (CMV) systemically infects both tobacco and zucchini squash. CMV capsid protein loop mutants with single-amino-acid substitutions are unable to systemically infect squash, but they revert to a wild-type phenotype in the presence of an additional, specific single-site substitution. The D118A, T120A, D192A, and D197A loop mutants reverted to a wild-type phenotype but did so in combination with P56S, P77L, A162V, and I53F or T124I mutations, respectively. The possible effect of these compensatory mutations on other, nonsystemically infecting loop mutants was tested with the F117A mutant and found to be neutral, thus indicating a specificity to the observed changes.  相似文献   

20.
Malignantly transformed mouse fibroblasts synthesize and secrete large amounts of major excreted protein (MEP), a 39,000-dalton precursor to an acid protease (cathepsin L). To evaluate the possible role of this protease in the transformed phenotype, we transfected cloned genes for mouse or human MEP into mouse NIH 3T3 cells with an expression vector for the dominant, selectable human multidrug resistance (MDR1) gene. The cotransfected MEP sequences were efficiently coamplified and transcribed during stepwise selection for multidrug resistance in colchicine. The transfected NIH 3T3 cell lines containing amplified MEP sequences synthesized as much MEP as did Kirsten sarcoma virus-transformed NIH 3T3 cells. The MEP synthesized by cells transfected with the cloned mouse and human MEP genes was also secreted. Elevated synthesis and secretion of MEP by NIH 3T3 cells did not change the nontransformed phenotype of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号