首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To identify potent and selective calcium-release-activated calcium (CRAC) channel inhibitors, we examined the structure-activity relationships of the pyrazole and thiophene moieties in compound 4. Compound 25b was found to exhibit highly potent and selective inhibitory activity for CRAC channels and further modifications of the pyrazole and benzoyl moieties of compound 25b produced compound 29. These compounds were potent inhibitors of IL-2 production in vitro and also acted as inhibitors in pharmacological models of diseases resulting from T-lymphocyte activation, after oral administration.  相似文献   

2.
Direct activation of cloned K(atp) channels by intracellular acidosis   总被引:1,自引:0,他引:1  
ATP-sensitive K(+) (K(ATP)) channels may be regulated by protons in addition to ATP, phospholipids, and other nucleotides. Such regulation allows a control of cellular excitability in conditions when pH is low but ATP concentration is normal. However, whether the K(ATP) changes its activity with pH alterations remains uncertain. In this study we showed that the reconstituted K(ATP) was strongly activated during hypercapnia and intracellular acidosis using whole-cell recordings. Further characterizations in excised patches indicated that channel activity increased with a moderate drop in intracellular pH and decreased with strong acidification. The channel activation was produced by a direct action of protons on the Kir6 subunit and relied on a histidine residue that is conserved in all K(ATP). The inhibition appeared to be a result of channel rundown and was not seen in whole-cell recordings. The biphasic response may explain the contradictory pH sensitivity observed in cell-endogenous K(ATP) in excised patches. Site-specific mutations of two residues showed that pH and ATP sensitivities were independent of each other. Thus, these results demonstrate that the proton is a potent activator of the K(ATP). The pH-dependent activation may enable the K(ATP) to control vascular tones, insulin secretion, and neuronal excitability in several pathophysiologic conditions.  相似文献   

3.
A series of 7-substituted-3-cyclobutylamino-4H-1,2,4-benzothiadiazine-1,1-dioxide derivatives has been synthesized and evaluated as K(ATP) channel agonists using the inside-out excised patch clamp technique. The most active compounds were approximately 20-fold more potent than diazoxide in opening K(ATP) channels. A linear relationship exists between the potency of the compound and the sigma value of the 7-substituent with electron-withdrawing groups exhibiting higher activity. These compounds may be useful in modulating insulin release from pancreatic beta-cells and in diseases associated with hyperinsulinemia.  相似文献   

4.
We have reported on the design, synthesis, and biological characterization of (R)-4-[3,4-dioxo-2-(1,2,2-trimethyl-propylamino)-cyclobut-1-enylamino]-3-ethyl-benzonitrile (1), a novel, potent, and selective adenosine 5'-triphosphate-sensitive potassium (K(ATP)) channel opener with potential utility for the treatment of urge urinary incontinence (UUI). Excising the aniline-derived nitrogen atom of 1 or replacing it with an aralkyl group, led to bladder smooth muscle relaxant chemotypes 3 and 4, respectively. Prototype compounds in these series were found to produce significant increases in an iberiotoxin (IbTx)-sensitive hyperpolarizing current, thus suggesting that these relatively modest structural modifications resulted in a switch in the mechanism of action of these smooth muscle relaxants from K(ATP) channel openers to activators of the large-conductance Ca2+-activated potassium channel (BK(Ca)). We report herein the syntheses and biological evaluation of a series of substituted 3-amino-4-aryl-(and aralkyl-)cyclobut-3-ene-1,2-diones.  相似文献   

5.
We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP.  相似文献   

6.
The present investigation tested the hypothesis that nitric oxide (NO) potentiates ATP-sensitive K(+) (K(ATP)) channels by protein kinase G (PKG)-dependent phosphorylation in rabbit ventricular myocytes with the use of patch-clamp techniques. Sodium nitroprusside (SNP; 1 mM) potentiated K(ATP) channel activity in cell-attached patches but failed to enhance the channel activity in either inside-out or outside-out patches. The 8-(4-chlorophenylthio)-cGMP Rp isomer (Rp-CPT-cGMP, 100 microM) suppressed the potentiating effect of SNP. 8-(4-Chlorophenylthio)-cGMP (8-pCPT-cGMP, 100 microM) increased K(ATP) channel activity in cell-attached patches. PKG (5 U/microl) added together with ATP and cGMP (100 microM each) directly to the intracellular surface increased the channel activity. Activation of K(ATP) channels was abolished by the replacement of ATP with ATPgammaS. Rp-pCPT-cGMP (100 microM) inhibited the effect of PKG. The heat-inactivated PKG had little effect on the K(ATP) channels. Protein phosphatase 2A (PP2A, 1 U/ml) reversed the PKG-mediated K(ATP) channel activation. With the use of 5 nM okadaic acid (a PP2A inhibitor), PP2A had no effect on the channel activity. These results suggest that the NO-cGMP-PKG pathway contributes to phosphorylation of K(ATP) channels in rabbit ventricular myocytes.  相似文献   

7.
Epoxyeicosatrienoic acids (EETs), the cytochrome P450 metabolites of arachidonic acid (AA), are potent and stereospecific activators of cardiac ATP-sensitive K(+)(K(ATP)) channels. EETs activate K(ATP) channels by reducing channel sensitivity to ATP. In this study, we determined the direct effects of EETs on the binding of ATP to K(ATP) channel protein. A fluorescent ATP analog, 2,4,6-trinitrophenyl (TNP)-ATP, which increases its fluorescence emission significantly upon binding with proteins, was used for binding studies with glutathione-S-transferase (GST) Kir6.2 fusion proteins. TNP-ATP bound to GST fusion protein containing the C-terminus of Kir6.2 (GST-Kir6.2C), but not to the N-terminus of Kir6.2, or to GST alone. 11,12-EET (5 muM) did not change TNP-ATP binding K(D) to GST-Kir6.2C, but B(max) was reduced by half. The effect of 11,12-EET was dose-dependent, and 8,9- and 14,15-EETs were as effective as 11,12-EET in inhibiting TNP-ATP binding to GST-Kir6.2C. AA and 11,12-dihydroxyeicosatrienoic acid (11,12-DHET), the parent compound and metabolite of 11,12-EET, respectively, were not effective inhibitors of TNP-ATP binding to GST-Kir6.2C, whereas the methyl ester of 11,12-EET was. These findings suggest that the epoxide group in EETs is important for modulation of ATP binding to Kir6.2. We conclude that EETs bind to the C-terminus of K(ATP) channels, inhibiting binding of ATP to the channel.  相似文献   

8.
Exercise is a potent stimulus against cardiac ischemia reperfusion (IR) injury, although the protective mechanisms are not completely understood. The study purpose was to examine whether the mitochondrial or sarcolemmal ATP-sensitive potassium channel (mito K(ATP) or sarc K(ATP), respectively) mediates exercise-induced cardioprotection against post-IR cell death and apoptosis. Eighty-six, 4-mo-old male Sprague Dawley rats were randomly assigned to treadmill exercise (Ex; 30 m/min, 3 days, 60 min, ~70 maximal oxygen uptake) and sedentary (Sed) treatments. Rats were exposed to regional cardiac ischemia (50 min) and reperfusion (120 min) or Sham (170 min; no ligation) surgeries. Exercise subgroups received placebo (saline), 5-hydroxydecanoate (5HD; 10 mg/kg ip), or HMR1098 (10 mg/kg ip) to inhibit mito K(ATP) or sarc K(ATP) channel. Comprehensive outcome assessments included post-IR ECG arrhythmias, cardiac tissue necrosis, redox perturbations, and autophagy biomarkers. No arrhythmia differences existed between exercised and sedentary hearts following extended-duration IR (P < 0.05). The sarc K(ATP) channel was confirmed essential (P = 0.002) for prevention of antinecrotic tissue death with exercise (percent infarct, Sed = 42%; Ex = 20%; Ex5HD = 16%; ExHMR = 42%), although neither the mito K(ATP) (P = 0.177) nor sarc K(ATP) (P = 0.274) channel provided post-IR protection against apoptosis (terminal deoxynucleotidyl transferase deoxy UTP-mediated nick-end labeling-positive nuclei/mm(2), Sham = 1.8 ± 0.5; Sed = 19.4 ± 6.7; Ex = 7.5 ± 4.6; Ex5HD = 14.0 ± 3.9; ExHMR = 11.1 ± 1.8). Exercise preconditioning also appears to preserve basal autophagy levels, as assessed by Beclin 1 (P ≤ 0.001), microtubule-associated protein-1 light-chain 3B ratios (P = 0.020), and P62 (P ≤ 0.001), in the hours immediately following IR. Further research is needed to better understand these findings and corresponding redox changes in exercised hearts.  相似文献   

9.
10.
Two-pore K+ channels, NO and metabolic inhibition   总被引:1,自引:0,他引:1  
Ischemic preconditioning is a potent endogenous mechanism protecting many organs from the devastating effects of prolonged ischemia. In the heart, NO is one mediator of this myoprotective response thought to involve activation of the K(ATP) channel. Ischemic preconditioning is known to be induced by metabolic inhibition using sodium cyanide (NaCN) in single cardiomyocytes. In the present study, we show for the first time that the end effector channel activated by NaCN has been incorrectly identified. The channel activated is not K(ATP) but instead belongs to the relatively new family of two-pore domain potassium channels (K2P). Further when activated by metabolic ischemia, the amplitude of K2P current is directly modulated by activators and inhibitors of the NO pathway.  相似文献   

11.
Postresuscitation myocardial dysfunction has been recognized as a leading cause of the high postresuscitation mortality rate. We investigated the effects of ischemic preconditioning and activation of ATP-sensitive K(+) (K(ATP)) channels on postresuscitation myocardial function. Ventricular fibrillation (VF) was induced in 25 Sprague-Dawley rats. Cardiopulmonary resuscitation (CPR), including mechanical ventilation and precordial compression, was initiated after 4 min of untreated VF. Defibrillation was attempted after 6 min of CPR. The animals were randomized to five groups treated with 1) ischemic preconditioning, 2) K(ATP) channel opener, 3) ischemic preconditioning with K(ATP) channel blocker administered 1 min after VF, 4) K(ATP) channel blocker administered 45 min before induction of ischemic preconditioning, and 5) placebo. Postresuscitation myocardial function, as measured by the rate of left ventricular pressure increase at 40 mmHg, the rate of left ventricular decline, cardiac index, and duration of survival, was significantly improved in both preconditioned and K(ATP) channel opener-treated animals. K(ATP) channel blocker administered 45 min before induction of ischemic preconditioning completely abolished the myocardial protective effects of preconditioning. We conclude that ischemic preconditioning significantly improved post-CPR myocardial function and survival. These results also provide evidence that the myocardial protective effects of ischemic preconditioning are mediated by K(ATP) channel activation.  相似文献   

12.
Kir6.1/SUR2B channel is the major isoform of K(ATP) channels in the vascular smooth muscle. Genetic disruption of either subunit leads to dysregulation of vascular tone and regional blood flows. To test the hypothesis that the Kir6.1/SUR2B channel is a target molecule of arginine vasopressin (AVP), we performed studies on the cloned Kir6.1/SUR2B channel and cell-endogenous K(ATP) channel in rat mesenteric arteries. The Kir6.1/SUR2B channel was expressed together with V1a receptor in the HEK-293 cell line. Whole cell currents of the transfected HEK cells were activated by K(ATP) channel opener pinacidil and inhibited by K(ATP) channel inhibitor glibenclamide. AVP produced a concentration-dependent inhibition of the pinacidil-activated currents with IC(50) 2.0 nM. The current inhibition was mediated by a suppression of the open-state probability without effect on single-channel conductance. An exposure to 100 nM PMA, a potent PKC activator, inhibited the pinacidil-activated currents, and abolished the channel inhibition by AVP. Such an effect was not seen with inactive phorbol ester. A pretreatment of the cells with selective PKC blocker significantly diminished the inhibitory effect of AVP. In acutely dissociated vascular smooth myocytes, AVP strongly inhibited the cell-endogenous K(ATP) channel. In isolated mesenteric artery rings, AVP produced concentration-dependent vasoconstrictions with EC(50) 6.5 nM. At the maximum effect, pinacidil completely relaxed vasoconstriction in the continuing exposure to AVP. The magnitude of the AVP-induced vasoconstriction was significantly reduced by calphostin-C. These results therefore indicate that the Kir6.1/SUR2B channel is a target molecule of AVP, and the channel inhibition involves G(q)-coupled V1a receptor and PKC.  相似文献   

13.
1,2,4-Thiadiazine derivatives, like 3-methyl-7-chlorobenzo-4H-1,2,4-thiadiazine 1,1-dioxide, diazoxide and 7-chloro-3-isopropylamino-4H-benzo-1,2,4-thiadiazine 1,1-dioxide, BPDZ 73, are potent openers of Kir6.2/SUR1 K(ATP) channels. To explore the structure-activity relationship of this series of K(ATP) openers, 4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide and N-(2-cyanomethylsulfonylphenyl)acylamide derivatives were synthesized from 2-acetylamino-5-chloro-benzenesulfonic acid pyridinium salt or 2-aminobenzenethiols. The 4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide derivatives (e.g., 7-chloro-3-isopropylamino-4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide, 3f) were found to activate K(ATP) channels as indicated by their ability to hyperpolarize beta cell membrane potential, to inhibit glucose-stimulated insulin release in vitro and to increase ion currents through Kir6.2/SUR1 channel as measured by patch clamp. The potency and efficacy of, for example, 3f is however significantly reduced compared to the corresponding 4H-1,2,4-benzothiadiazine 1,1-dioxide derivatives. Opening of the 4H-1,2,4-thiadiazine ring to get (e.g., 2-cyanomethylsulfonyl-4-fluorophenyl) carbamic acid isopropyl ester (4c) gives rise to compounds, which are able to open K(ATP) channels but with considerable reduced potency compared to, for example, diazoxide. Compound 3a, 7-chloro-3-methyl-4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide, which inhibits insulin release in vitro from beta cells and rat islets, reduces plasma insulin levels and blood pressure in anaesthetized rats upon intravenous administration.  相似文献   

14.
ATP-dependent K(+) channels (K(ATP) channels) are composed of pore-forming subunits Kir6.x and sulfonylurea receptors (SURs). Cyanoguanidines such as pinacidil and P1075 bind to SUR and enhance MgATP binding to and hydrolysis by SUR, thereby opening K(ATP) channels. In the vasculature, openers of K(ATP) channels produce vasorelaxation. Some novel cyanoguanidines, however, selectively reverse opener-induced vasorelaxation, suggesting that they might be K(ATP) channel blockers. Here we have analyzed the interaction of the enantiomers of a racemic cyanoguanidine blocker, PNU-94750, with Kir6.2/SUR channels. In patch clamp experiments, the R-enantiomer (PNU-96293) inhibited Kir6.2/SUR2 channels (IC(50) approximately 50 nm in the whole cell configuration), whereas the S-enantiomer (PNU-96179) was a weak opener. Radioligand binding studies showed that the R-enantiomer was more potent and that it was negatively allosterically coupled to MgATP binding, whereas the S-enantiomer was weaker and positively coupled. Binding experiments also suggested that both enantiomers bound to the P1075 site of SUR. This is the first report to show that the enantiomers of a K(ATP) channel modulator affect channel activity and coupling to MgATP binding in opposite directions and that these opposite effects are apparently mediated by binding to the same (opener) site of SUR.  相似文献   

15.
The modelling of molecule-molecule interactions has been widely accepted as a tool for drug discovery and development studies. However, this powerful technique is unappreciated in physiological and biochemical studies, where it could be extremely useful for understanding the mechanisms of action of various compounds in cases when experimental data are controversial due to complexity of the investigated systems. In this study, based on the biochemical data suggesting involvement of mitochondrial ADP/ATP carrier in K+ and H+ transport to mitochondrial matrix molecular modelling is applied to elucidate the possible interactions between the ADP/ATP carrier and its putative ligands--K(ATP) channel blockers glybenclamide, tolbutamide and 5-hydroxydecanoate. Results revealed that K(ATP) channel blockers could bind to the specific location proximal to H1, H4, H5 and H6 transmembrane helices within the cavity of the ADP/ ATP carrier. Analysis of the predicted binding site suggests that K(ATP) channel blockers could interfere with both the ADP/ATP translocation and possible cation flux through the ADP/ATP carrier, and supports the hypothesis that the ADP/ATP carrier is a target of K(ATP) channel modulators.  相似文献   

16.
We describe ATP-dependent inhibition of the 75-105-pS (in 250 mM Cl-) anion channel (SCl) from the sarcoplasmic reticulum (SR) of rabbit skeletal muscle. In addition to activation by Ca2+ and voltage, inhibition by ATP provides a further mechanism for regulating SCl channel activity in vivo. Inhibition by the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate (AMP-PNP) ruled out a phosphorylation mechanism. Cytoplasmic ATP (approximately 1 mM) inhibited only when Cl- flowed from cytoplasm to lumen, regardless of membrane voltage. Flux in the opposite direction was not inhibited by 9 mM ATP. Thus ATP causes true, current rectification in SCl channels. Inhibition by cytoplasmic ATP was also voltage dependent, having a K(I) of 0.4-1 mM at -40 mV (Hill coefficient approximately 2), which increased at more negative potentials. Luminal ATP inhibited with a K(I) of approximately 2 mM at +40 mV, and showed no block at negative voltages. Hidden Markov model analysis revealed that ATP inhibition 1) reduced mean open times without altering the maximum channel amplitude, 2) was mediated by a novel, single, voltage-independent closed state (approximately 1 ms), and 3) was much less potent on lower conductance substates than the higher conductance states. Therefore, the SCl channel is unlikely to pass Cl- from cytoplasm to SR lumen in vivo, and balance electrogenic Ca2+ uptake as previously suggested. Possible roles for the SCl channel in the transport of other anions are discussed.  相似文献   

17.
ATP-sensitive potassium channel (K(ATP)) is one kind of inwardly rectifying channel composed of two kinds of subunits: the pore forming subunits and the regulatory subunits. K(ATP) channels exist in the sarcolemmal, mitochondrial and nuclear membranes of various tissues. Cell metabolism regulates K(ATP) gene expression and metabolism products regulate the channel by direct interactions, while K(ATP) controls membrane potentials and regulate cell activities including energy metabolism, apoptosis and gene expression. K(ATP) channels from different cell organelles are linked by some signal molecules and they can respond to common stimulation in a coordinate way. In the cardiovascular system K(ATP) has important functions. The most prominent is that opening of this channel can protect cardiac myocytes against ischemic injuries. The sarcolemmal K(ATP) may provide a basic protection against ischemia by energy sparing, while both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels are necessary for the ischemia preconditioning. K(ATP) channels also have important functions including homeostasis maintenance and vascular tone regulation under physiological conditions. Further elucidation of the role of K(ATP) in the cardiovascular system will help us to regulate cell metabolism or prevent damage caused by abnormal channel functions.  相似文献   

18.
The objective of the present study was to investigate the role of delta(1)-opioid receptors in mediating cardioprotection in isolated chick cardiac myocytes and to investigate whether protein kinase C and mitochondrial ATP-sensitive K(+) (K(ATP)) channels act downstream of the delta(1)-opioid receptor in mediating this beneficial effect. A 5-min preexposure to the selective delta(1)-opioid receptor agonist (-)-TAN-67 (1 microM) resulted in less myocyte injury during the subsequent prolonged ischemia compared with untreated myocytes. 7-Benzylidenenaltrexone, a selective delta(1)-opioid receptor antagonist, completely blocked the cardioprotective effect of (-)-TAN-67. Naltriben methanesulfonate, a selective delta(2)-opioid receptor antagonist, had only a slight inhibitory effect on (-)-TAN-67-mediated cardioprotection. Nor-binaltorphimine dihydrochloride, a kappa-opioid receptor antagonist, did not affect (-)-TAN-67-mediated cardioprotection. The protein kinase C inhibitor chelerythrine and the K(ATP) channel inhibitors glibenclamide, a nonselective K(ATP) antagonist, and 5-hydroxydecanoic acid, a mitochondrial selective K(ATP) antagonist, reversed the cardioprotective effect of (-)-TAN-67. These results suggest that the delta(1)-opioid receptor is present on cardiac myocytes and mediates a potent cardioprotective effect via protein kinase C and the mitochondrial K(ATP) channel.  相似文献   

19.
This study reports the identification of an endogenous inhibitor of the G protein-gated (K(ACh)) channel and its effect on the K(ACh) channel kinetics. In the presence of acetylcholine in the pipette, K(ACh) channels in inside-out atrial patches were activated by applying GTP to the cytoplasmic side of the membrane. In these patches, addition of physiological concentration of intracellular ATP (4 mM) upregulated K(ACh) channel activity approximately fivefold and induced long-lived openings. However, such ATP-dependent gating is normally not observed in cell-attached patches, indicating that an endogenous substance that inhibits the ATP effect is present in the cell. We searched for such an inhibitor in the cell. ATP-dependent gating of the K(ACh) channel was inhibited by the addition of the cytosolic fraction of rat atrial or brain tissues. The lipid component of the cytosolic fraction was found to contain the inhibitory activity. To identify the lipid inhibitor, we tested the effect of approximately 40 different lipid molecules. Among the lipids tested, only unsaturated free fatty acids such as oleic, linoleic, and arachidonic acids (0.2-2 microM) reversibly inhibited the ATP-dependent gating of native K(ACh) channels in atrial cells and hippocampal neurons, and of recombinant K(ACh) channels (GIRK1/4 and GIRK1/2) expressed in oocytes. Unsaturated free fatty acids also inhibited phosphatidylinositol-4, 5-bisphosphate (PIP(2))-induced changes in K(ACh) channel kinetics but were ineffective against ATP-activated background K(1) channels and PIP(2)-activated K(ATP) channels. These results show that during agonist-induced activation, unsaturated free fatty acids in the cytoplasm help to keep the cardiac and neuronal K(ACh) channels downregulated by antagonizing their ATP-dependent gating. The opposing effects of ATP and free fatty acids represent a novel regulatory mechanism for the G protein-gated K(+) channel.  相似文献   

20.
We examined the effects of interferon-alpha on the ATP-sensitive K+ current (IK,ATP) in rabbit ventricular cells using the patch-clamp technique. IK,ATP was induced by NaCN. Whole-cell experiments indicated that interferon-alpha (5 x 10(2) - 2.4 x 10(4) U/ml) inhibited IK,ATP in a concentration-dependent manner (60.7+/-7.5% with 2.4 x 10(4) U/ml). In cell-attached configuration, interferon-alpha (2.4 x 10(4) U/ml) applied to the external solution also inhibited the activity of the single ATP-sensitive K+ (KATP) channel by 56.0+/-5.8% without affecting the single channel conductance. The inhibitory effect of IK,ATP by interferon-alpha was blocked by genistein and herbimycin A, tyrosine kinase inhibitors, but was not affected by N-(2-metylpiperazyl)-5-isoquinolinesulfoamide (H-7), an inhibitor of protein kinase C and cAMP-dependent protein kinase. These findings suggest that interferon-alpha inhibits the cardiac KATP channel through the activation of tyrosine kinase. The tyrosine kinase-mediated inhibition of IK,ATP by cytokines may aggravate cell damage during myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号