首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasopressin and nonmammalian hormone vasotocin are known to increase the water permeability of mammalian collecting ducts, frog skin and the urinary bladder. Neurohypophysial nonapeptides have also been shown to interfere with the regulation of renal ion transport. The subject of this study was a search for vasopressin and vasotocin analogues with selective effects on renal water, sodium and potassium excretion. During this study, we synthesised the following peptides: 13 vasotocin analogues modified at positions 4 (Thr or Arg), 7 (Gly or Leu) and 8 (d ‐Arg, Lys or Glu); 4 vasopressin analogues modified at positions 4 and 8; and 9 peptides shortened or extended at the C‐terminal or with substitutions for Gly‐NH2. Most of these peptides had mercaptopropionic acid (Mpa) instead of Cys in position 1. The effects of these nonapeptides on renal water, sodium and potassium transport were evaluated in in vivo experiments using Wistar rats. Some nonapeptides possessed antidiuretic, natriuretic and kaliuretic activities ([Mpa1]‐arginine vasotocin, [Mpa1, homoArg8]‐vasotocin, [Mpa1, Thr4]‐arginine vasotocin and [Mpa1, Arg4]‐arginine vasopressin). Substitutions at positions 4 and 8 increased the selectivity of peptide actions. The antidiuretic [d ‐Arg8]‐vasotocin analogues had no effects on sodium excretion. [Mpa1, Arg4]‐arginine vasotocin was antidiuretic and kaliuretic but not natriuretic. [Mpa1, Glu8]‐oxytocin had weak natriuretic activity without any effects on water and potassium transport. In accordance with the data obtained, synthesised vasotocin analogues could be good candidates for pharmaceuticals selectively regulating renal sodium and potassium transport, which is of clinical importance. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
We determined the effect of oxytocin, alpha-melanocyte stimulating hormone (alpha-MSH) and arginine vasotocin on renal function of the macaque monkey. The only significant effect of the peptides was that alpha-MSH had an antidiuretic effect and vasotocin had both an antidiuretic and natriuretic effect.  相似文献   

3.
A method is described for the determination of the neurohormone contents of ovine pineal tissue by radioimmunoassay (RIA) after successive fractionation on gel filtration in formic acid and reverse-phase liquid chromatography (HPLC). This method gives a good resolution for the neurohormones vasopressin, vasotocin and oxytocin, without a significant interference of aspecific cross-reacting of peptides with the RIA. An acid extract from ovine pineal tissue was found to contain amounts of immunoreactive AVP- and OXT-like peptides, whereas an AVT-like peptide was not detectable over background levels after HPLC with post-column RIA. It is concluded from our results that an AVT-like peptide is not present in ovine pineal tissue, and the pineal AVP- and OXT-like peptides appeared to be associated to neurophysin molecules.  相似文献   

4.
Antisera against vasopressin, vasotocin, oxytocin, neurophysin-1 and neurophysin-2 were used to investigate immunocytochemically the presence of neurons containing substances antigenically related to these peptides in the nervous system of the Colorado potato beetle. Ten different antisera were used, four against vasopressin, three against oxytocin and one against vasotocin, neurophysin-1, and neurophysin-2. Immunoreactivity was shown by all antisera except those against the neurophysins. The vasopressin antisera all gave different results. One antiserum revealed only a single neuron pair, whereas others revealed in addition one or two other different cell groups. The oxytocin antisera likewise revealed different neurons. The fixation procedure influenced the outcome of the immunocytochemical reaction. Immunoreactivity as revealed by vasopressin, vasotocin and oxytocin antisera is often co-localized in the same neurons; solid phase adsorptions showed that this is due to cross-reactivity of the antisera. Some of the immunoreactive neurons are identical to those recently described to contain a bovine pancreatic polypeptide/FMRFamide-like peptide. This co-localization is probably not due to a cross-reaction. These findings indicate the presence of several vasopressin-like and oxytocin-like substances which in the Colorado potato beetle all have a different degree of immunocytochemical resemblance to vasopressin and oxytocin.  相似文献   

5.
M P Mattson  E Spaziani 《Peptides》1985,6(4):635-640
Biological and immunological relationships between molt-inhibiting hormone (MIH) activity in eyestalk ganglia extracts of the crab, Cancer antennarius Stimpson, and peptides of the vasopressin-oxytocin family were assessed. Lysine vasopressin (LVP), arginine vasopressin (AVP), vasotocin (VT), and oxytocin (OT) mimicked MIH action by inhibiting ecdysteroid production of Y-organ segments in vitro with the relative potencies LVP greater than AVP greater than VT much much greater than OT. The inhibitory effect was reversible and specific (6 other peptides did not alter Y-organ activity). MIH and LVP increased Y-organ cyclic adenosine 3',5' monophosphate (cAMP) levels dose-dependently and with identical time course in which the rise in cAMP preceded inhibition of ecdysteroid production. The synthetic vasopressin antidiuretic agonist 1-deamino-8-D-AVP (dDAVP) inhibited Y-organ steroidogenesis dose-dependently; the vasopressin analog ([1(B-mercapto-beta, beta-cyclopentamethylenepropionic acid), 2-(O-methyl)tyrosine[AVP) (d(CH2)5Tyr(Me)AVP), a vasopressor antagonist, had no effect on basal or MIH-suppressed steroidogenesis. AVP antiserum abolished the inhibitory action of MIH, LVP, and AVP. Competitive binding curves for MIH, LVP, AVP, VT, and OT with the AVP antiserum suggested that MIH is most closely related to LVP. MIH may be structurally related to the vasopressins and act on Y-organ cells via type V2 (cAMP-linked) receptors.  相似文献   

6.
A large number of reports have demonstrated the presence of neurohypophysial hormone-like peptides in mammalian pineal glands and an antigonadotropic function has been ascribed to pineal arginine vasotocin (AVT). We have undertaken large scale purification of bovine pineal neurohypophysial hormone-like substances which demonstrate mouse mammary milk-ejection activity (ME-activity) in vitro. Peptides with ME-activity were extracted from more than 5 kg of bovine pineal glands. ME-activity containing peptides were found in both high (Mr approximately 10,000-15,000) and low (Mr approximately 500-1000) Mr species from Sephadex G-25 chromatography of 0.2 N acetic acid extracts. After ultrafiltration in 5% formic acid, the neurohypophysial hormone-like peptides were localized to an ultrafiltration Mr 500-1000 retentate. A homogeneous peptide, which shared an identical retention time (RT) and amino acid sequence with synthetic 8-arginine vasopressin (AVP), was isolated by serial semipreparative high performance liquid chromatography. On the other hand, the non-mammalian nonapeptide AVT was not identified.  相似文献   

7.
Although neurohypophysial peptides are present in many regions of the developing and adult bullfrog (Rana catesbeiana) brain, the function of these peptides remains unclear. To investigate possible behavioral actions, we examined locomotor activity following peptide injection in bullfrogs at various developmental stages. An intraperitoneal (ip) injection of arginine vasotocin (AVT) in tadpoles (stages V, X, or XVII) produced an immediate and dose-dependent inhibition of locomotor activity. On the other hand, AVT stimulated activity when administered ip to juvenile or adult female bullfrogs, but did not influence activity in juvenile or adult males. The minimum effective dose of AVT, when injected directly into the brain of tadpoles, was 100-fold less than that observed when injected ip, suggesting a central nervous system site of action for this peptide. A vasopressin receptor antagonist (d(CH2)5[Tyr(Me)2]AVP administered ip or icv) significantly increased locomotor activity in tadpoles, compared to controls. Oxytocin, vasopressin, and AVP4-9 inhibited activity in tadpoles while mesotocin, des Gly(NH2)AVP, and pressinoic acid had no significant effect. Injection of PGF2 alpha also significantly decreased activity levels in tadpoles. However, pretreatment of tadpoles with indomethacin, a prostaglandin synthesis inhibitor, did not prevent the behavioral effects of AVT, suggesting that prostaglandin synthesis is not required for this response. In summary, AVT influenced locomotor activity in bullfrog tadpoles and female frogs. This effect shifted during development from an inhibitory action in tadpoles to a stimulatory effect in metamorphosed female frogs. The effect of AVT on juvenile and adult frog locomotion was sexually dimorphic, as this peptide altered female behavior but not male behavior.  相似文献   

8.
Present-day marsupials, which are supposed to have arisen from a single stem diverging from the placental stem some 130 million years ago, exist only in the American and Australian continents. Comparison of the homologous genes and their protein products, which evolved under different environmental conditions, may provide arguments for either selective or neutral evolution. In contrast to Australian Macropodidae, which have pecuIiar neurohypophysial peptides, namely mesotocin and two pressor peptides, lysine vasopressin and phenypressin, the South American oppossum,Didelpbis marsupialis, has oxytocin, lysine vasopressin, and arginine vasopressin. Because placental mammals have oxytocin and usually arginine vasopressin, and nonmammalian tetrapods have mesotocin and arginine vasotocin, it is assumed that (1) selective change of arginine vasotocin into arginine vasopressin occurred in mammalian ancestors and a subsequent gene duplication in the marsupial line gave rise to two pressor peptides with divergent neutral drifts in American and Australian groups, and (2) mesotocin of nonmammalian tetrapods has been preserved in Australian marsupials and reclaimed for milk-ejecting function whereas it has been converted into oxytocin in South American oppossums. The change of mesotocin into oxytocin seems neutral rather than selective.  相似文献   

9.
Summary Antisera against vasopressin, vasotocin, oxytocin, neurophysin-1 and neurophysin-2 were used to investigate immunocytochemically the presence of neurons containing substances antigenically related to these peptides in the nervous system of the Colorado potato beetle. Ten different antisera were used, four against vasopressin, three against oxytocin and one against vasotocin, neurophysin-1, and neurophysin-2. Immunoreactivity was shown by all antisera except those against the neurophysins. The vasopressin antisera all gave different results. One antiserum revealed only a single neuron pair, whereas others revealed in addition one or two other different cell groups. The oxytocin antisera likewise revealed different neurons. The fixation procedure influenced the outcome of the immunocytochemical reaction. Immunoreactivity as revealed by vasopressin, vasotocin and oxytocin antisera is often co-localized in the same neurons; solid phase adsorptions showed that this is due to cross-reactivity of the antisera. Some of the immunoreactive neurons are identical to those recently described to contain a bovine pancreatic polypeptide/FMRFamide-like peptide. This co-localization is probably not due to a cross-reaction. These findings indicate the presence of several vasopressin-like and oxytocin-like substances which in the Colorado potato beetle all have a different degree of immunocytochemical resemblance to vasopressin and oxytocin.  相似文献   

10.
In experiments on non-anesthetized Wistar white rats there was studied reaction of kidney to an intramuscular injection of arginine vasotocin or arginine vasopressin at doses from 0.001 to 0.05 µg/100 g body mass on the background of a water load. Water (5 ml/100 g body mass) was administered through a catheter into stomach to suppress secretion of endogenous antidiuretic hormone (ADH). In experiments with water administration, diuresis increased due to a decrease of osmotic permeability of renal tubules and to excretion of osmotically free water, with the constant clearance of sodium ions. Injection of 0.05 µg arginine vasopressin led to a marked decrease of diuresis due to a rise of reabsorption of osmotically free water without elevation of excretion of osmotically active substances. Injection of the same dose of arginine vasotocin resulted in no increase of diuresis; however, reabsorption of osmotically free water and excretion of osmotically active substances including sodium ions were more pronounced. Hence, both vasotocin and vasopressin increased osmotic permeability of the tubular epithelium, but vasotocin, unlike vasopressin, promoted reduction of reabsorption of sodium ions and their loss with urine. A suggestion is made that one of the reasons for replacement in mammals of the molecular ADH forms (vasotocin by vasopressin) was the absence of the pronounced natriuretic effect in arginine vasopressin. This was of crucial significance to preserve sodium ions in the organism, to maintain water–salt balance in animals adapted to the terrestrial life, and to provide not only osmo-, but also volumoregulation.  相似文献   

11.
Eight pregnant female rats were chronically treated via an osmotic pump with arginine vasopressin or placebo during days 13 to 19 gestation. All offspring were tested as adults in either a discrimination task or a 25 day retention of a passive avoidance response. The results revealed that rats whose mother had been treated with vasopressin did not differ from controls on the acquisition or reversal of a brightness discrimination; however, they did require more trials to reach criterion during the ten day memory test of discrimination reversal. Further, treatment resulted in impaired memory retrieval in male rats on the 25 day memory test, while female rats were not affected. Treatment did not influence body weight. The results indicated that vasopressin administered during the prenatal period of development may have had a teratogenic effect on memory retrieval.  相似文献   

12.
Neurons that synthesize melanin-concentrating hormone (MCH) colocalize GABA, regulate energy homeostasis, modulate water intake, and influence anxiety, stress, and social interaction. Similarly, vasopressin and oxytocin can influence the same behaviors and states, suggesting that these neuropeptides may exert part of their effect by modulating MCH neurons. Using whole cell recording in MCH-green fluorescent protein (GFP) transgenic mouse hypothalamic brain slices, we found that both vasopressin and oxytocin evoked a substantial excitatory effect. Both peptides reversibly increased spike frequency and depolarized the membrane potential in a concentration-dependent and tetrodotoxin-resistant manner, indicating a direct effect. Substitution of lithium for extracellular sodium, Na(+)/Ca(2+) exchanger blockers KB-R7943 and SN-6, and intracellular calcium chelator BAPTA, all substantially reduced the vasopressin-mediated depolarization, suggesting activation of the Na(+)/Ca(2+) exchanger. Vasopressin reduced input resistance, and the vasopressin-mediated depolarization was attenuated by SKF-96265, suggesting a second mechanism based on opening nonselective cation channels. Neither vasopressin nor oxytocin showed substantial excitatory actions on lateral hypothalamic inhibitory neurons identified in a glutamate decarboxylase 67 (GAD67)-GFP mouse. The primary vasopressin receptor was vasopressin receptor 1a (V1aR), as suggested by the excitation by V1aR agonist [Arg(8)]vasotocin, the selective V1aR agonist [Phe(2)]OVT and by the presence of V1aR mRNA in MCH cells, but not in other nearby GABA cells, as detected with single-cell RT-PCR. Oxytocin receptor mRNA was also detected in MCH neurons. Together, these data suggest that vasopressin or oxytocin exert a minimal effect on most GABA neurons in the lateral hypothalamus but exert a robust excitatory effect on presumptive GABA cells that contain MCH. Thus, some of the central actions of vasopressin and oxytocin may be mediated through MCH cells.  相似文献   

13.
To confirm and extend the results of previous studies which demonstrated central cardiovascular effects of vasopressin in anesthetized rats, we determined blood pressure and heart rate changes for 30 minutes after intracerebroventricular injections of arginine vasopressin, arginine vasotocin and oxytocin in conscious rats. As compared to sham injections, significantly greater increases in either systolic or diastolic blood pressure were noted over the 30 minutes which followed the injection of 0.15, 1.0 or 10.0 nM of either vasopressin or vasotocin. In animals given vasopressin, plasma levels of the peptide were determined. There was a substantial increase in plasma vasopressin only after the highest dose. Overall blood pressure responses to doses of oxytocin as high as 100 nM were not significantly different than sham injections. Heart rate following both vasopressin and vasotocin was increased at 0.15 nM, was initially decreased then increased at 1.0 nM and was substantially decreased after the 10.0 nM dose. There was a significant increase in heart rate at the 10.0 nM and 100 nM doses of oxytocin. Dose response curves for systolic blood pressure and heart rate 20 minutes after injection were similar for vasopressin and vasotocin. We conclude that arginine vasopressin has significant central pressor and tachycardic effects in conscious rats, and it is related, at least in part, to the tail structure of the peptide, which is shared with arginine vasotocin.  相似文献   

14.
Rat pituitary extracts contain two methyltransferases that catalyze stepwise methylation of phosphatidyl-ethanolamine to phosphatidylcholine using S-adenosylmethionine as the methyl donor. The activities of both of these enzymes were stimulated by 40 μM lysine or arginine vasopresin but not oxytocin, arginine vasotocin and Pro-Leu-Gly NH2. The concentration of lysine-vasopressin required for the half-maximal stimulation of phospholipid methylation was 27 μM. A comparison of the chemical structure of different peptides with their ability to stimulate phospholipid methylation suggests that the stimulatory activity resides in the covalent ring structure (pressinoic acid) of the vasopressin molecule.  相似文献   

15.

Background  

The mammalian neurohypophysial hormones, vasopressin and oxytocin are involved in osmoregulation and uterine smooth muscle contraction respectively. All jawed vertebrates contain at least one homolog each of vasopressin and oxytocin whereas jawless vertebrates contain a single neurohypophysial hormone called vasotocin. The vasopressin homolog in non-mammalian vertebrates is vasotocin; and the oxytocin homolog is mesotocin in non-eutherian tetrapods, mesotocin and [Phe2]mesotocin in lungfishes, and isotocin in ray-finned fishes. The genes encoding vasopressin and oxytocin genes are closely linked in the human and rodent genomes in a tail-to-tail orientation. In contrast, their pufferfish homologs (vasotocin and isotocin) are located on the same strand of DNA with isotocin gene located upstream of vasotocin gene separated by five genes, suggesting that this locus has experienced rearrangements in either mammalian or ray-finned fish lineage, or in both lineages. The coelacanths occupy a unique phylogenetic position close to the divergence of the mammalian and ray-finned fish lineages.  相似文献   

16.
cDNA clones encoding two members of the vasotocin hormone precursor gene family have been isolated from the white sucker Catostomus commersoni. The hormone is encoded by at least two distinct genes, both of which are expressed, as indicated by Northern blot analysis. Genomic DNA amplified by the polymerase chain reaction has been used to define exon-intron boundaries. Both vasotocin genes contain introns in positions corresponding to those found in the gene of their mammalian counterpart vasopressin. The predicted vasotocin precursors show a surprising degree of sequence divergence, amounting to 45% at the amino acid level, of which only approximately half can be accounted for by conservative amino acid changes. The precursors include a hormone moiety followed by a putative neurophysin sequence that is longer at the C-terminus by a tract of some 30 amino acids by comparison to their mammalian counterpart. Each of these sequences contains a leucine-rich core segment resembling that found in copeptin, a glycopeptide moiety present in mammalian vasopressin precursors.  相似文献   

17.
Administration of 5 ml/100 g body weight of 1% glucose solution to stomach produced the same diuretic kidney response in fasted Wistar rats as administration of the same amount of water. Intragastric administration of arginine vasopressin along with the water load evoked an antidiuretic response. Arginine vasopressin in the same volume of glucose induced no kidney response difference as compared with the hormone action in experiments with water load. 0.1 nmol of arginine vasotocin, having been itroduced into the rat isolated ileum, prevented the effect of glucose on the hormone absoption. 0.1 nmol of arginine vasotocin, having been introduced into the frog isolated ileum along with isotonic glucose solution, increased the hormone absorption; fructose did not affect this process whereas mannitol decreased absorption ofarginine vasotocin. This absorption was also reduced by intraileal introduction of arginine vasotocin with the hypotonic Ringer solution. The findings suggest that glucose in the rat gastrointestinal tract does not affect arginine vasopressin absorption in vivo, whereas in the frog ileum glucose increases arginine vasotocin absorption in vitro.  相似文献   

18.
M. Hong  T.W. Moody   《Peptides》1991,12(6):1315-1319
The ability of vasopressin to elevate cytosolic Ca2+ in small cell lung cancer (SCLC) cells was investigated. Ten nanomolar vasopressin elevated the cytosolic Ca2+ in 6 of 8 SCLC cell lines that were loaded with Fura-2 AM. Using SCLC cell line NCI-H345, the effect of vasopressin was dose dependent, being maximal at 100 nM, where the cytosolic Ca2+ was elevated from 150 to 210 nM. Because addition of 1 mM EGTA had no effect on the vasopressin response, vasopressin released Ca2+ from intracellular pools. Also, oxytocin weakly elevated the cytosolic Ca2+. The response to vasopressin was strongly blocked by [(β-mercapto-β,β-cyclopentamethylene propionic acid)1,O-MeTyr2,Arg8]vasopressin and weakly blocked by [(β-mercapto-β,β-cyclopentamethylene propionic acid)1,O-MeTyr2,Orn8]vasotocin. These data suggest that V1 vasopressin receptors are present on SCLC cells.  相似文献   

19.
It is unclear whether the behavioral effects of peptides in laboratory studies always reflect natural conditions. Here we test whether we can detect measurable behavioral changes after rapidly injecting peptides into the brains of wild birds. We used a modified stereotaxic-like technique to inject corticotrophin-releasing factor (CRF) and arginine vasotocin (AVT, the nonmammalian form of arginine vasopressin), two hormones important in the stress response, into the brains of wild, freely behaving, male white-crowned sparrows (Zonotrichia leucophrys). We then monitored subsequent territorial behavior to determine whether CRF or AVT altered this behavior. Surprisingly, the potent stressors of capture and surgery did not eliminate territorial behavior, with many birds resuming territorial defense within 60–90 min after surgery. Centrally acting CRF, however, significantly reduced territorial defense whereas centrally acting AVT had no effect. These results indicate that the behavioral affects of peptides can be studied under natural conditions.  相似文献   

20.
R Acher  J Chauvet 《Biochimie》1988,70(9):1197-1207
Neurohypophysial hormones and neurophysins are derived from common precursors processed during the axonal transport from the hypothalamus to the neurohypophysis. Two neurohormones, an oxytocin-like and a vasopressin-like, on one hand, two neurophysins, termed VLDV-and MSEL-neurophysins according to residues in positions 2, 3, 6 and 7, on the other, are usually found in vertebrate species. In contrast to placental mammals that have oxytocin and arginine vasopressin, marsupials have undergone a peculiar evolution. Two pressor peptides, lysipressin and vasopressin for American species, lysipressin and phenylpressin for Australian macropods, have been identified in individual glands and it is assumed that the primordial vasopressin gene has been duplicated in these lineages. On the other hand, the reptilian mesotocin is still present in Australian species instead of the mammalian oxytocin, while the North American opossum has both hormones and South American opossums have only oxytocin. The neurophysin domain of each precursor is encoded by 3 exons and different evolutionary rates have been found for the 3 corresponding parts of the protein. The central parts, encoded by the central exons, are evolutionarily very stable and nearly identical in the 2 neurophysins of a given species. Recurrent gene conversions have apparently linked the evolutions of the 2 precursor lineages. In mammals, the 3-domain precursor of vasopressin is processed in 2 stages: a first cleavage splitting off vasopressin and a second cleavage separating MSEL-neurophysin from copeptin. Two distinct enzymatic systems seem to be involved in these cleavages. Processing is usually complete at the level of the neurohypophysis, but an intermediate precursor encompassing MSEL -neurophysin and copeptin linked by an arginine residue has been characterized in guinea pig. In vitro processing of this intermediate through trypsin--Sepharose reveals cleavages only in the interdomain region. In non-mammalian tetrapods, such as birds and amphibians, mesotocin and vasotocin are associated with neurophysins in precursors similar to those found in mammals. However, processing of the vasotocin precursor seems to be different from the processing of the vasopressin precursor, with a single cleavage leading to the hormone release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号